精英家教网 > 高中数学 > 题目详情
16.平面内凸四边形有2条对角线,凸五边形有5条对角线,以此类推,凸13边形的对角线条数为(  )
A.42B.65C.143D.169

分析 首先从特殊四边形的对角线观察起,则四边形是2条对角线,五边形有5=2+3条对角线,六边形有9=2+3+4条对角线,则七边形有9+5=14条对角线,则八边形有14+6=20条对角线.根据对角线条数的数据变化规律进行总结即得.

解答 解:可以通过列表归纳分析得到;

多边形45678
对角线22+32+3+42+3+4+52+3+4+5+6
13边形有2+3+4+…+11=$\frac{13×10}{2}$=65条对角线.
故选B.

点评 本题主要考查了多边形对角线的条数的公式总结,考查了简单的合情推理.解答关键是能够从特殊中找到规律进行计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知R上的奇函数f(x)满足:当x>0时,f(x)=x2+x-1,则f[f(-1)]=(  )
A.-1B.1C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线y=x2(-2≤x≤2)绕y轴旋转一周形成一个如图所示的抛物面围成的几何体,在此旋转体内水平放入一个正方体,使正方体的一个面恰好与旋转体的开口面平齐,则此正方体的棱长是(  )
A.1B.2C.$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设抛物线C:y2=2px(p>0)的焦点为F,点A在C上,若|AF|=$\frac{5}{2}$,以线段AF为直径的圆经过点B(0,1),则p=1或4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设抛物线C:y2=2x的焦点为F,点A在C上,若|AF|=$\frac{5}{2}$,以线段AF为直径的圆经过点B(0,m),则m=1或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.经国务院批复同意,郑州成功入围国家中心城市,某校学生团针对“郑州的发展环境”对20名学生进行问卷调查打分(满分100分),得到如图1所示茎叶图.
(Ⅰ)分别计算男生女生打分的平均分,并用数学特征评价男女生打分的数据分布情况;
(Ⅱ)如图2按照打分区间[0,60)、[60,70)、[70,80)、[80,90)、[90,100]绘制的直方图中,求最高矩形的高;
(Ⅲ)从打分在70分以下(不含70分)的同学中抽取3人,求有女生被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=$\frac{{ln({x^2}-4x+4)}}{{{{(x-2)}^3}}}$的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知$\frac{1+sin2θ+cos2θ}{1+sin2θ-cos2θ}$=$\frac{3}{5}$,则tanθ=$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.一个袋中有10个大小相同的黑球、白球和红球,已知从袋中任意摸出2个球,至少得到一个白球的概率是$\frac{7}{9}$.
(1)求白球的个数;
(2)求从袋中任意摸出3个球,至多有一个白球的概率.

查看答案和解析>>

同步练习册答案