精英家教网 > 高中数学 > 题目详情
1.经国务院批复同意,郑州成功入围国家中心城市,某校学生团针对“郑州的发展环境”对20名学生进行问卷调查打分(满分100分),得到如图1所示茎叶图.
(Ⅰ)分别计算男生女生打分的平均分,并用数学特征评价男女生打分的数据分布情况;
(Ⅱ)如图2按照打分区间[0,60)、[60,70)、[70,80)、[80,90)、[90,100]绘制的直方图中,求最高矩形的高;
(Ⅲ)从打分在70分以下(不含70分)的同学中抽取3人,求有女生被抽中的概率.

分析 (Ⅰ)利用茎叶图能求出女生打分的平均分和男生打分的平均分,从茎叶图来看,女生打分相对集中,男生打分相对分散.
(Ⅱ)20名学生中,打分区间[0,60)、[60,70)、[70,80)、[80,90)、[90,100]中的学生数分别为:2人,4人,9人,4人,1人,打分区间[70,80)的人数最多,有9人,所点频率为0.45,由此能求出最高矩形的高.
(Ⅲ)打分在70分以下(不含70分)的同学有6人,其中男生4人,女生2人,有女生被抽中的对立事件是抽中的3名同学都是男生,由此利用对立事件概率计算公式能求出有女生被抽中的概率.

解答 解:(Ⅰ)女生打分的平均分为:
$\overline{{x}_{1}}$=$\frac{1}{10}$(68+69+75+76+70+79+78+82+87+96)=78,
男生打分的平均分为:
$\overline{{x}_{2}}$=$\frac{1}{10}$(55+53+62+65+71+70+73+74+86+81)=69.
从茎叶图来看,女生打分相对集中,男生打分相对分散.
(Ⅱ)20名学生中,打分区间[0,60)、[60,70)、[70,80)、[80,90)、[90,100]中的学生数分别为:
2人,4人,9人,4人,1人,
打分区间[70,80)的人数最多,有9人,所点频率为:$\frac{9}{20}$=0.45,
∴最高矩形的高h=$\frac{0.45}{10}$=0.045.
(Ⅲ)打分在70分以下(不含70分)的同学有6人,其中男生4人,女生2人,
从中抽取3人,基本事件总数n=${C}_{6}^{3}$=20,
有女生被抽中的对立事件是抽中的3名同学都是男生,
∴有女生被抽中的概率p=1-$\frac{m}{n}$=1-$\frac{{C}_{4}^{3}}{{C}_{6}^{3}}$=$\frac{4}{5}$.

点评 本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.${∫}_{0}^{1}$(2x+$\sqrt{1-{x}^{2}}$)dx=1+$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.为了得到y=cos(2πx-$\frac{π}{3}$)的图象,只需将y=sin(2πx+$\frac{π}{3}$)的图象向右平移n(n>0)个单位,则n的最小值为$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若等比数列{an}的公比为2,且a3-a1=6,则$\frac{1}{{{a}_{1}}}$+$\frac{1}{{{a}_{2}}}$+…+$\frac{1}{{{a}_{n}}}$=1-$\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.平面内凸四边形有2条对角线,凸五边形有5条对角线,以此类推,凸13边形的对角线条数为(  )
A.42B.65C.143D.169

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)与抛物线y2=2px(p>0)有相同的焦点F,且双曲线的一条渐近线与抛物线的准线交于点M(-3,t),|MF|=$\frac{{\sqrt{153}}}{2}$,则双曲线的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在三棱锥A-BCD中,AD=DC=2,AD⊥DC,AC=CB,AB=4,平面ADC⊥平面ABC,M为AB的中点.
(Ⅰ)求证:BC⊥平面ADC;
(Ⅱ)求直线AD与平面DMC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xoy中圆C的参数方程为$\left\{\begin{array}{l}x=2+3cosα\\ t=3sinα\end{array}\right.$(α为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为$θ=\frac{π}{4}({ρ∈R})$.
(1)求圆C的直角坐标方程及其圆心C的直角坐标;
(2)设直线l与曲线C交于A,B两点,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x≥0}\\{x+y≤2}\\{y≥x}\end{array}\right.$,若目标函数z=kx+y仅在点(1,1)处取得最小值,则实数k的取值范围是  (  )
A.(-1,+∞)B.(-∞,-1)C.(1,+∞)D.(-∞,1)

查看答案和解析>>

同步练习册答案