精英家教网 > 高中数学 > 题目详情
14.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x≥0}\\{x+y≤2}\\{y≥x}\end{array}\right.$,若目标函数z=kx+y仅在点(1,1)处取得最小值,则实数k的取值范围是  (  )
A.(-1,+∞)B.(-∞,-1)C.(1,+∞)D.(-∞,1)

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用目标函数z=kx+y取得最小值时的唯一最优解是(1,1),得到直线y=-kx+z斜率的变化,从而求出k的取值范围

解答 解:作出不等式组对应的平面区域如图:(阴影部分OAB).
由z=kx+y得y=-kx+z,即直线的截距最大,z也最大.
平移直线y-kx+z,要使目标函数z=kx+y取得最小值时的唯一最优解是(1,1),
即直线y=-kx+z经过点A(1,1)时,截距最小,
由图象可知当阴影部分必须在直线y=-kx+z的右上方,
此时只要满足直线y=-kx+z的斜率-k大于直线OA的斜率即可
直线OA的斜率为1,
∴-k>1,所以k<-1.
故选:B

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.根据目标函数在A(1,1)取得最小值,得到直线斜率的关系是解决本题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.经国务院批复同意,郑州成功入围国家中心城市,某校学生团针对“郑州的发展环境”对20名学生进行问卷调查打分(满分100分),得到如图1所示茎叶图.
(Ⅰ)分别计算男生女生打分的平均分,并用数学特征评价男女生打分的数据分布情况;
(Ⅱ)如图2按照打分区间[0,60)、[60,70)、[70,80)、[80,90)、[90,100]绘制的直方图中,求最高矩形的高;
(Ⅲ)从打分在70分以下(不含70分)的同学中抽取3人,求有女生被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,a,b,c分别是角A,B,C的对边,其外接圆半径为1,(c-2a)cosB+bcosC=0.
(1)求角B的大小;
(2)求△ABC周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=kx+2与函数$y=\frac{1}{|x|}$的图象至少有两个公共点,关于k不等式(k-2)a-k>0有解,则实数a的取值范围是(  )
A.$-1<a<\frac{1}{3}$B.$a<\frac{1}{3}$C.a<-1D.a≥1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.一个袋中有10个大小相同的黑球、白球和红球,已知从袋中任意摸出2个球,至少得到一个白球的概率是$\frac{7}{9}$.
(1)求白球的个数;
(2)求从袋中任意摸出3个球,至多有一个白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知复数(ai+2)i(a∈R)的实部与虚部互为相反数,则a的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,点A(c,b),右焦点F(c,0),椭圆上存在一点M,使得$\overrightarrow{OM}•\overrightarrow{OA}=\overrightarrow{OF}•\overrightarrow{OA}$,且$\overrightarrow{OM}+\overrightarrow{OF}=t\overrightarrow{OA}({t∈R})$,则该椭圆的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,O为其内部一点,且满足$\overrightarrow{OA}+\overrightarrow{OC}+3\overrightarrow{OB}=\vec 0$,则△AOB和△AOC的面积比是(  )
A.3:4B.3:2C.1:1D.1:3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示,在△ABC中,D为BC的中点,BP丄DA,垂足为P,且BP=2,则$\overrightarrow{BC}$•$\overrightarrow{BP}$=(  )
A.2B.4C.8D.16

查看答案和解析>>

同步练习册答案