精英家教网 > 高中数学 > 题目详情
如图,四边形ABCD为矩形,求图中阴影部分绕AB旋转一周所形成的几何体的表面积.
分析:由旋转一周得到的几何体为圆柱去掉一个半径为2的半球,利用圆柱和球的表面积公式进行计算即可.
解答:解:图中阴影部分绕AB旋转一周所形成的几何体的表面积,
得到的几何体为圆柱去掉一个半径为2的半球,
半球的表面积为
1
2
×4π×22=8π

圆柱的底面半径为2,高为4,
∴圆柱的底面积为π×22=4π,
圆柱的侧面积为2π×2×4=16π,
∴该几何体的表面积为8π+4π+16π=28π.
点评:本题主要考查旋转体的表面积,要求熟练掌握常见几何体的表面积公式.比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD与A′ABB′都是边长为a的正方形,点E是A′A的中点,A′A⊥平面ABCD.
(1) 求证:A′C∥平面BDE;
(2) 求证:平面A′AC⊥平面BDE
(3) 求平面BDE与平面ABCD所成锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(Ⅰ)证明PQ⊥平面DCQ;
(Ⅱ)求棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为矩形,且AD=2,AB=1,PA⊥平面ABCD,PA=1,E为BC的中点.
(1)求点C到面PDE的距离;  
(2)求二面角P-DE-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD
128°
128°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
12
PD.
(1)证明:平面PQC⊥平面DCQ;
(2)求二面角D-PQ-C的余弦值.

查看答案和解析>>

同步练习册答案