精英家教网 > 高中数学 > 题目详情
4.函数$y=2sinx(\frac{π}{2}≤x≤\frac{5π}{2})$的图象和直线y=2围成一个封闭的平面图形的面积为(  )
A.4B.8C.D.

分析 数形结合,函数$y=2sinx(\frac{π}{2}≤x≤\frac{5π}{2})$的图象和直线y=2围成一个封闭的平面图形的面积,利用三角函数的对称性,可以近似看是长为2π,宽为2的长方形的面积.从而求得面积!

解答 解:数形结合,如图所示.函数$y=2sinx(\frac{π}{2}≤x≤\frac{5π}{2})$的图象和直线y=2围成一个封闭的平面图形的面积,
利用三角函数的对称性,可以近似看是长为2π,宽为2的长方形的面积,所以S=4π,
故选:D.

点评 本题主要考查定积分的简单应用 的理解能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在下面的四个区间上,函数f(x)=x2-x+1不是减函数的是(  )
A.(-∞,-2)B.(-2,-1)C.(-1,1)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线l过点(3,1)且与直线2x-y-2=0平行,则直线l的方程为(  )
A.2x-y-5=0B.2x-y+1=0C.x+2y-7=0D.x+2y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|x2-4x+3=0},B={x|x2-5x<0,x∈N},则满足条件A⊆C⊆B的集合C的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等比数列{an}的各项均为正数,且6a2,1,4a1成等差数列,3a6,a3,3a2成等比数列.
(1)求数列{an}的通项公式;
(2)已知bn=log3$\frac{1}{{a}_{n}}$,记cn=an•bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.定义$a⊕b=\left\{\begin{array}{l}a,a≥b\\ b,a<b\end{array}\right.$,已知函数f(x)=sinx⊕cosx,给出下列四个结论:
(1)该函数的值域为[-1,1];
(2)f(x)是周期函数,最小正周期为π;
(3)当且仅当$2kπ+π<x<2kπ+\frac{3π}{2}(k∈Z)$时,f(x)<0;
(4)当且仅当$x=2kπ+\frac{π}{2}(k∈Z)$时,该函数取得最大值.其中正确的结论是(3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=lg(2+x)+lg(2-x)
(1)求函数f(x)的定义域;
(2)记函数g(x)=10f(x)+2x,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.终边在第三象限的角的集合可以表示为{α|180°+k•360°<α<270°+k•360°,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.若函数$f(x)=\frac{{a{x^2}+4}}{bx}$,且f(1)=5,f(2)=4.
(1)求a,b的值,写出f(x)的表达式;
(2)求证f(x)在[2,+∞)上是增函数.

查看答案和解析>>

同步练习册答案