分析 (1)利用函数的单调性的定义直接证明即可.
(2)判断函数的奇偶性,利用函数的单调性化简求解即可.
解答 解:(1)证明:f(x)的定义域为R…(1分)
设x1<x2,则$f({x_1})-f({x_2})=(a-\frac{2}{{{2^{x_1}}+1}})-(a-\frac{2}{{{2^{x_2}}+1}})$
=$\frac{2}{{{2^{x_2}}+1}}-\frac{2}{{{2^{x_1}}+1}}=\frac{{{2^{{x_1}+1}}-{2^{{x_2}+1}}}}{{({2^{x_1}}+1)({2^{x_2}}+1)}}$…(4分)
因为${2^{{x_2}+1}}>{2^{{x_1}+1}},{2^{x_1}}+1>0,{2^{x_2}}+1>0$
所以$\frac{{{2^{{x_1}+1}}-{2^{{x_2}+1}}}}{{({2^{x_1}}+1)({2^{x_2}}+1)}}<0$即f(x1)<f(x2)
所以,不论a何值f(x)为增函数 …(6分)
(2)因为f(-x)+f(x)=0
所以f(1-2x)=-f(2x-1)
又因为f(x+1)+f(1-2x)>0
所以f(x+1)>f(2x-1)…(9分)
又因为f(x)为增函数,所以x+1>2x-1
解得 x<2 …(12分)
点评 本题考查函数的单调性以及函数的奇偶性的判断与应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | A∪B=A | B. | A⊆B | C. | A∩B=∅ | D. | A∩(∁IB)≠∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{5}{2}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -1 | C. | -1或0 | D. | 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com