精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\left\{{\begin{array}{l}{2^x}-1,x>0\\ x,x≤0.\end{array}}$若f(a)+f(1)=0,则实数a的值等于(  )
A.2B.-1C.-1或0D.0

分析 由已知得f(a)=-f(1)=-(21-1)=-1.当a>0时,f(a)=2a-1=-1;当a≤0时,f(a)=a=-1.由此能求出实数a.

解答 解:∵函数f(x)=$\left\{{\begin{array}{l}{2^x}-1,x>0\\ x,x≤0.\end{array}}$,f(a)+f(1)=0,
∴f(a)=-f(1)=-(21-1)=-1,
当a>0时,f(a)=2a-1=-1,无解;
当a≤0时,f(a)=a=-1.
∴实数a=-1.
故选:B.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设a是实数,f(x)=a-$\frac{2}{{{2^x}+1}}$(x∈R).
(1)证明不论a为何实数,f(x)均为增函数;
(2)若f(x)满足f(-x)+f(x)=0,解关于x的不等式f(x+1)+f(1-2x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设0<a≤1,函数f(x)=x+$\frac{a}{x}$-1,g(x)=x-2lnx,若对任意的x1∈[1,e],存在x2∈[1,e]都有f(x1)≥g(x2)成立,则实数a的取值范围是[2-2ln2,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某几何体的三视图如图所示,则该几何体的体积为$\frac{7}{3}π$;表面积为$(5+\sqrt{2})π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列各函数中,表示同一函数的是(  )
A.y=lgx与$y=\frac{1}{2}lgx{\;}^2$B.$y=\frac{{{x^2}-1}}{x-1}$与y=x+1
C.$y=\sqrt{x^2}-1$与y=x-1D.y=x与$y={log_a}{a^x}$(a>0且a≠1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.log3$\sqrt{27}$+($\frac{8}{125}$)${\;}^{-\frac{1}{3}}}$-(-$\frac{3}{5}$)0+$\root{4}{{{{16}^3}}}$=11.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.销售甲、乙两种商品所得利润分别是y1,y2万元,它们与投入资金x万元的关系分别为y1=m$\sqrt{x+1}$+a,y2=bx,(其中m,a,b都为常数),函数y1,y2对应的曲线C1,C2如图所示.
(1)求函数y1与y2的解析式;
(2)若该商场一共投资10万元经销甲、乙两种商品,求该商场所获利润的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:
(1)8${\;}^{-\frac{1}{3}}}$+(-$\frac{5}{9}$)0-$\sqrt{{{(e-3)}^2}}$;
(2)$\frac{1}{2}$lg25+lg2-log29×log32.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,已知在四边形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.
(1)求∠BDA的大小
(2)求BC的长.

查看答案和解析>>

同步练习册答案