精英家教网 > 高中数学 > 题目详情
9.log3$\sqrt{27}$+($\frac{8}{125}$)${\;}^{-\frac{1}{3}}}$-(-$\frac{3}{5}$)0+$\root{4}{{{{16}^3}}}$=11.

分析 利用对数、指数的性质、运算法则求解.

解答 解:log3$\sqrt{27}$+($\frac{8}{125}$)${\;}^{-\frac{1}{3}}}$-(-$\frac{3}{5}$)0+$\root{4}{{{{16}^3}}}$
=$lo{g}_{3}{3}^{\frac{3}{2}}$+$[(\frac{2}{5})^{3}]^{-\frac{1}{3}}$-1+23
=$\frac{3}{2}+\frac{5}{2}-1+8$
=11.
故答案为:11.

点评 本题考查对数、指数式化简求值,是基础题,解题时要认真审题,注意对数、指数的性质、运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.“a,b不相交”是“a,b异面”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设点P为有公共焦点F1,F2的椭圆和双曲线的一个交点,且cos∠F1PF2=$\frac{3}{5}$,椭圆的离心率为e1,双曲线的离心率为e2,若e2=2e1,则e1=(  )
A.$\frac{\sqrt{10}}{4}$B.$\frac{\sqrt{7}}{5}$C.$\frac{\sqrt{7}}{4}$D.$\frac{\sqrt{10}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线l:2x+y-1=0与圆C:x2+y2=1相交于A,B两点.
(1)求△AOB的面积(O为坐标原点);
(2)设直线ax+by=1与圆C:x2+y2=1相交于M,N两点(其中a,b是实数),若OM⊥ON,试求点P(a,b)与点Q(0,1)距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{{\begin{array}{l}{2^x}-1,x>0\\ x,x≤0.\end{array}}$若f(a)+f(1)=0,则实数a的值等于(  )
A.2B.-1C.-1或0D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)是定义在R上的奇函数,且当x≥0时f(x)=$\frac{2x}{x+2}$.
(1)求f(x)的解析式;
(2)判断f(x)的单调性(不必证明);
(3)若对任意的t∈R,不等式f(k-3t2)+f(t2+2t)≤0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.三个数a=0.52,b=log20.5,c=20.5之间的大小关系是(  )
A.b<a<cB.a<c<bC.a<b<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如果a>b,那么下列不等式中正确的是(  )
A.$\frac{1}{a}<\frac{1}{b}$B.|a|>|b|C.a2>b2D.a3>b3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△ABC三边a,b,c上的高分别为$\frac{1}{2}$,$\frac{{\sqrt{2}}}{2}$,1,则cosA等于(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{2}}}{2}$C.$-\frac{{\sqrt{2}}}{4}$D.$-\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

同步练习册答案