精英家教网 > 高中数学 > 题目详情

已知函数f(x)是定义在R上的奇函数,且f(x-4)=-f(x),在[0,2]上f(x)是增函数,则下列结论:①若0<x1<x2<4,且x1+x2=4,则f(x1)+f(x2)>0;②若0<x1<x2<4,且x1+x2=5,则f(x1)>f(x2);③若方程f(x)=m在[-8,8]内恰有四个不同的角x1,x2,x3,x4,则x1+x2+x3+x4=±8,其中正确的有


  1. A.
    0个
  2. B.
    1个
  3. C.
    2个
  4. D.
    3个
D
分析:由条件“f(x-4)=-f(x)”得f(x+8)=f(x),说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,
由这些画出示意图,由图可解决问题.
解答:解:此函数是周期函数,又是奇函数,且在[0,2]上为增函数,
综合条件得函数的示意图,由图看出,
①若0<x1<x2<4,且x1+x2=4,f(x)在[0,2]上是增函数,则f(x1)>f(x1-4)=f(-x2)=-f(x2);,则f(x1)+f(x2)>0;故①正确;
②若0<x1<x2<4,且x1+x2=5,f(x)在[0,2]上是增函数,由图可知:f(x1)>f(x2);故②正确;
③四个交点中两个交点的横坐标之和为2×(-6),
另两个交点的横坐标之和为2×2,
所以x1+x2+x3+x4=-8.故③正确;
故选D.
点评:数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)计算:[f(1)]2-[g(1)]2
(2)证明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)图象上的两点,且x1+x2=1.
(1)求证:y1+y2为定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的条件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn为数列{an}的前n项和.求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

同步练习册答案