精英家教网 > 高中数学 > 题目详情
已知点列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)顺次为一次函数图象上的点,点列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)顺次为x轴正半轴上的点,其中x1=a(0<a<1),对于任意n∈N,点An、Bn、An+1构成一个顶角的顶点为Bn的等腰三角形.
(1)求数列{yn}2的通项公式,并证明{yn}3是等差数列;
(2)证明xn+2-xn5为常数,并求出数列{xn}6的通项公式;
(3)问上述等腰三角形An8Bn9An+110中,是否存在直角三角形?若有,求出此时a值;若不存在,请说明理由.

【答案】分析:(1)利用点列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)顺次为一次函数,可得数列{yn}的通项公式,进而有{yn}是等差数列;
(2)根据△AnBnAn+1与△An+1Bn+1An+2为等腰三角形,可得,两式相减,即可求出数列{xn}的通项公式;
(3)要使△AnBnAn+1为直角三角形,则,根据(2)分n为奇数、偶数时,进行讨论,可求此时a值.
解答:解:(1)∵点列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)顺次为一次函数


∴{yn}是等差数列;
(2)∵△AnBnAn+1与△An+1Bn+1An+2为等腰三角形
.∴xn+2-xn=2

(3)要使△AnBnAn+1为直角三角形,则
当n为奇数时,xn+1-xn=2(1-a),∴

n=1,得,n=3得,n≥5,则无解;
当n为偶数时,同理得
 n=2,得 ,n≥4,则无解;
∴存在直角三角形,此时a值为
点评:本题以函数为载体,考查数列知识,考查数列的通项,考查分类讨论思想,有较强的综合性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)顺次为直线y=
x4
上的点,点列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)顺次为x轴上的点,其中x1=a(0<a<1),对任意的n∈N*,点An、Bn、An+1构成以Bn为顶点的等腰三角形.
(Ⅰ)求证:对任意的n∈N*,xn+2-xn是常数,并求数列{xn}的通项公式;
(Ⅱ)问是否存在等腰直角三角形AnBnAn+1?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知点列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)顺次为一次函数y=
1
4
x+
1
12
图象上的点,点列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)顺次为x轴正半轴上的点,其中x1=a(0<a<1),对于任意n∈N,点An、Bn、An+1构成以
Bn为顶点的等腰三角形.
(1)求{yn}的通项公式,且证明{yn}是等差数列;
(2)试判断xn+2-xn是否为同一常数(不必证明),并求出数列{xn}的通项公式;
(3)在上述等腰三角形AnBnAn+1中,是否存在直角三角形?若有,求出此时a值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•上海模拟)已知点列B1(1,y1),B2(2,y2),…,Bn(n,yn),…(n∈N*)顺次为直线y=
x4
上的点,点列A1(x1,0),A2(x2,0),…,An(xn,0),…(n∈N*)顺次为x轴上的点,其中x1=a(0<a<1),对任意的n∈N*,点An、Bn、An+1构成以Bn为顶点的等腰三角形.
(1)证明:数列{yn}是等差数列;
(2)求证:对任意的n∈N*,xn+2-xn是常数,并求数列{xn}的通项公式;
(3)对上述等腰三角形AnBnAn+1添加适当条件,提出一个问题,并做出解答.(根据所提问题及解答的完整程度,分档次给分)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点列B1(1,y1)、B2(2,y2)、…、Bn(n,yn)(n∈N)顺次为一次函数y=
1
4
x+
1
12
图象上的点,点列A1(x1,0)、A2(x2,0)、…、An(xn,0)(n∈N)顺次为x轴正半轴上的点,其中x1=a(0<a<1),对于任意n∈N,点An、Bn、An+1构成一个顶角的顶点为Bn的等腰三角形.
(1)求数列{yn}2的通项公式,并证明{yn}3是等差数列;
(2)证明xn+2-xn5为常数,并求出数列{xn}6的通项公式;
(3)问上述等腰三角形An8Bn9An+110中,是否存在直角三角形?若有,求出此时a值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•蓝山县模拟)已知点列B1(1,b1),B2(2,b2),…,Bn(n,bn),…(n∈N?)顺次为抛物线y=
1
4
x2上的点,过点Bn(n,bn)作抛物线y=
1
4
x2的切线交x轴于点An(an,0),点Cn(cn,0)在x轴上,且点An,Bn,Cn构成以点Bn为顶点的等腰三角形.
(1)求数列{an},{cn}的通项公式;
(2)是否存在n使等腰三角形AnBnCn为直角三角形,若有,请求出n;若没有,请说明理由.
(3)设数列{
1
an•(
3
2
+cn)
}的前n项和为Sn,求证:
2
3
≤Sn
4
3

查看答案和解析>>

同步练习册答案