精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
a•3x+a-2
3x+1
,函数f(x)为奇函数.
(1)求实数a的值;
(2)判断f(x)的单调性,并用定义证明.
(3)若解不等式f(x+2)+f(x-3)<0.
考点:奇偶性与单调性的综合
专题:函数的性质及应用
分析:(1)根据题意和奇函数的结论:f(0)=0列出方程求出a的值;
(2)先判断出函数的单调性,再用定义证明:任取x1,x2∈R,且x1<x2,利用作差判断f(x2)与f(x1)的大小,根据单调性的定义可作出判断;
(3)利用函数的奇偶性将不等式f(x+2)+f(x-3)<0转化为f(x+2)<-f(x-3)=f(3-x),然后利用单调性求不等式的解集.
解答: 解:(1)由题意得,奇函数f(x)的定义域是R,
∴f(0)=
a•30+a-2
30+1
=0,解得a=1,
(2)由(1)得,f(x)=
3x-1
3x+1

f(x)在定义域上是单调增函数,证明如下:
任取x1,x2∈R,且x1<x2
则f(x2)-f(x1)=
3x2-1
3x2+1
-
3x1-1
3x1+1

=
(3x2-1)(3x1+1)-(3x1-1)(3x2+1)
(3x2+1)(3x1+1)

=
2(3x2-3x1)
(3x2+1)(3x1+1)

∵x1<x2,且3x2>03x1>0
3x2-3x1>03x2+1>03x1+1>0
∴f(x2)-f(x1)>0,即f(x2)>f(x1),
∴f(x)为R上的单调增函数;
(3))∵f(x)在(-∞,+∞)上为增函数,且为奇函数,
∴原不等式f(x+2)+f(x-3)<0等价为f(x+2)<-f(x-3)=f(3-x),
∴x+2<3-x,解得x
1
2

即不等式的解集是{x|x
1
2
}.
点评:本题考查函数奇偶性的应用,利用定义法证明函数的单调性,以及函数单调性和奇偶性的综合应用,利用函数的奇偶性将不等式进行转化是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知Sn为等差数列{an}的前n项和,{bn}是等比数列,且a1=b1=2,S4=26,b4=16.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1
x=cosθ
y=
3
6
sinθ
(θ为参数),C2
x=
2
2
+t•cosα
y=t•sinα
(t为参数).
(Ⅰ)将C1、C2的方程化为普通方程;
(Ⅱ)若C2与C1交于M、N,与x轴交于P,求|PM|•|PN|的最小值及相应α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2|x-1|+|x+2|.
(Ⅰ)求不等式f(x)≥4的解集;
(Ⅱ)若不等式f(x)<|m-2|的解集是非空集合,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
x
+lnx(a∈R).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)在(Ⅰ)的条件下求函数f(x)+2x的极值;
(Ⅲ)若f(x)<
1
2
x在x∈(1,+∞)时恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+2x-2-a(a≤0),
(1)若a=-1,求函数的零点;
(2)若函数在区间(0,1]上恰有一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=alnx+
1
2
x2-x(a∈R)
(Ⅰ)若x=2是函数f(x)的一个极值点,求f(x)的最小值;
(Ⅱ)对?x∈(e,+∞),f(x)-ax>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=[x]表示不超过x的最大整数,例如f(-3.5)=-4,f(2.1)=2.设函数g(x)=
2x
1+2x
-
1
2
,则函数y=f[g(x)]+f[g(-x)]的值域为
 
.(用集合表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x=
5k+1
,k∈N},B={x|x≤6,x∈Q},则A∩B=
 

查看答案和解析>>

同步练习册答案