精英家教网 > 高中数学 > 题目详情

在如图所示的多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1。

(1)请在线段CE上找到一点F,使得直线BF∥平面ACD,并证明;
(2)求平面BCE与平面ACD所成锐二面角的大小;

(1)点F应是线段CE的中点(2)

解析试题分析:解:以D点为原点建立如图所示的空间直角坐标系,使得轴和轴的正半轴分别经过点A和点E,则各点的坐标为

(1)点F应是线段CE的中点,下面证明:
设F是线段CE的中点,则点F的坐标为
,∴
,而是平面ACD的一个法向量,此即证得BF∥平面ACD;
(2)设平面BCE的法向量为,则,且

,不妨设,则,即
∴所求角满足,∴
考点:直线与平面平行的判定定理;二面角
点评:在立体几何中,常考的知识点是:几何体的表面积与体积、直线与平面平行的判定定理、直线与平面垂直的判定定理和二面角。对于二面角,建立空间直角坐标系能使问题简化。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在直三棱柱中,AA1=AB=BC=3,AC=2,D是AC的中点.

(1)求证:B1C∥平面A1BD;
(2)求平面A1DB与平面DBB1夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB="A" A1,∠BA A1=60°.

(Ⅰ)证明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C 与平面BB1C1C所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

长方体中,

(1)求直线所成角;
(2)求直线所成角的正弦.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平行四边形ABCD中,AB=6,AD=10,BD=8,E是线段AD的中点.沿BD将△BCD翻折到△,使得平面⊥平面ABD.

(Ⅰ)求证:平面ABD;
(Ⅱ)求直线与平面所成角的正弦值;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图, 在直角梯形中,

分别是的中点,现将折起,使,
(1)求证:∥平面;
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,,顶点在底面上的射影恰为点,且
(Ⅰ)证明:平面平面
(Ⅱ)求棱所成的角的大小;
(Ⅲ)若点的中点,并求出二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)
已知的三个顶点坐标为分别为:试判断的形状。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若直线经过点和点,其中,则该直线的倾斜角的取值范围是(     ).
A.      B        C.       D.

查看答案和解析>>

同步练习册答案