精英家教网 > 高中数学 > 题目详情
6.已知向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a|=1$,$|\overrightarrow a+\overrightarrow b|=\sqrt{7}$,$\overrightarrow a•(\overrightarrow b-\overrightarrow a)=-4$,则$\overrightarrow a$与$\overrightarrow b$夹角是(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

分析 将$\overrightarrow a•(\overrightarrow b-\overrightarrow a)=-4$展开可得$\overrightarrow{a}•\overrightarrow{b}$,将|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{7}$两边平方可求出|$\overrightarrow{b}$|,再代入向量的夹角公式计算即可.

解答 解:∵$\overrightarrow{a}(\overrightarrow{b}-\overrightarrow{a})$=$\overrightarrow{a}•\overrightarrow{b}-{\overrightarrow{a}}^{2}$=-4,${\overrightarrow{a}}^{2}$=|$\overrightarrow{a}$|2=1,
∴$\overrightarrow{a}•\overrightarrow{b}$=-3.
∵|$\overrightarrow{a}+\overrightarrow{b}$|=$\sqrt{7}$,即${\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}$=7,
∴${\overrightarrow{b}}^{2}$=12,即|$\overrightarrow{b}$|=2$\sqrt{3}$.
∴cos<$\overrightarrow{a},\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=-$\frac{\sqrt{3}}{2}$.
∵0≤<$\overrightarrow{a},\overrightarrow{b}$>≤π,
∴<$\overrightarrow{a},\overrightarrow{b}$>=$\frac{5π}{6}$.
故选:A.

点评 本题考查了平面向量的数量积运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(  )
A.12B.18C.24D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足$\left\{\begin{array}{l}x≥0\\ y≥0\\ \frac{x}{3}+\frac{y}{4}≤1\end{array}\right.$,则$\frac{x+2y+3}{x+1}$的取值范围是(  )
A.$[\frac{2}{3},11]$B.[3,11]C.$[\frac{3}{2},11]$D.[1,11]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=6cos($\frac{3π}{2}$+x)-cos2x的最小值是(  )
A.-7B.-6C.-5D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知三边长分别为4,5,6的△ABC的外接圆恰好是球O的一个大圆,P为球面上一点,若三棱锥P-ABC体积的最大值为(  )
A.8B.10C.12D.14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.圆C1:x2+y2+2ax+a2-9=0和圆C2:x2+y2-4by-1+4b2=0只有一条公切线,若a∈R,b∈R,且ab≠0,则$\frac{4}{a^2}+\frac{1}{b^2}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知F1,F2是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0$,b>0)的左、右焦点,若直线$y=\sqrt{3}x$与双曲线C交于P、Q两点,且四边形PF1QF2是矩形,则双曲线的离心率为(  )
A.$5-2\sqrt{5}$B.$5+2\sqrt{5}$C.$\sqrt{3}+1$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)是定义在R上的函数,f'(x)是f(x)的导函数.给出如下四个结论:
①若$f'(x)+\frac{f(x)}{x}>0$,且f(0)=e,则函数xf(x)有极小值0;
②若xf'(x)+2f(x)>0,则4f(2n+1)<f(2n),n∈N*
③若f'(x)-f(x)>0,则f(2017)>ef(2016);
④若f'(x)+f(x)>0,且f(0)=1,则不等式f(x)<e-x的解集为(0,+∞).
所有正确结论的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个圆经过椭圆$\frac{{x}^{2}}{4}$+y2=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为(  )
A.(x-$\frac{3}{2}$)2+y2=$\frac{25}{4}$B.(x+$\frac{3}{4}$)2+y2=$\frac{25}{16}$C.(x-$\frac{3}{4}$)2+y2=$\frac{25}{16}$D.(x-$\frac{3}{4}$)2+y2=$\frac{25}{4}$

查看答案和解析>>

同步练习册答案