精英家教网 > 高中数学 > 题目详情
15.已知f(x)是定义在R上的函数,f'(x)是f(x)的导函数.给出如下四个结论:
①若$f'(x)+\frac{f(x)}{x}>0$,且f(0)=e,则函数xf(x)有极小值0;
②若xf'(x)+2f(x)>0,则4f(2n+1)<f(2n),n∈N*
③若f'(x)-f(x)>0,则f(2017)>ef(2016);
④若f'(x)+f(x)>0,且f(0)=1,则不等式f(x)<e-x的解集为(0,+∞).
所有正确结论的序号是①③.

分析 由各个选项中的条件分别构造函数g(x),由求导公式和法则求出g′(x)后由条件判断出符号,由导数与函数单调性的关系判断出g(x)的单调性,由条件和函数的单调性进行判断即可.

解答 解:①、设g(x)=xf(x),则g′(x)=f(x)+xf′(x),
∵$f′(x)+\frac{f(x)}{x}>0$,∴$\frac{xf′(x)+f(x)}{x}>0$,
则函数g(x)在(-∞,0)递减,在(0,+∞)上递增,
∴函数g(x)的极小值是g(0)=0,①正确;
②、设g(x)=x2f(x),
则g′(x)=2xf(x)+x2f′(x)=x[xf'(x)+2f(x)],
∵xf'(x)+2f(x)>0,
∴则函数g(x)在(-∞,0)递减,在(0,+∞)上递增,
∵2n+1>2n>0,∴g(2n+1)>g(2n),即4f(2n+1)>f(2n),②不正确;
③、设g(x)=$\frac{f(x)}{{e}^{x}}$,则g′(x)=$\frac{{e}^{x}f′(x)-({e}^{x})′f(x)}{{(e}^{x})^{2}}$=$\frac{f′(x)-f(x)}{{e}^{x}}$,
∵f'(x)-f(x)>0,∴g'(x)>0,即g(x)在R上是增函数,
∴g(2017)>g(2016),则$\frac{f(2017)}{{e}^{2017}}>\frac{f(2016)}{{e}^{2016}}$,
即f(2017)>ef(2016),③正确;
④、g(x)=exf(x),
则g′(x)=exf(x)+exf′(x)=ex[f(x)+f′(x)],
∵对任意x∈R满足f(x)+f′(x)>0,ex>0,
∴对任意x∈R满足g′(x)>0,则函数g(x)在R上是增函数,
∵f(0)=1,且f(x)<e-x的化为g(x)<1=g(0),即x<1,
则不等式的解集是(-∞,1),④不正确;
故答案为:①③.

点评 本题考查导数与函数单调性的关系,函数单调性的应用,以及构造法的应用,考查化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.若复数z满足$z=\frac{1-i}{1+i}$(i为虚数单位),则|z|=(  )
A.$\frac{1}{2}$B.1C.2D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a|=1$,$|\overrightarrow a+\overrightarrow b|=\sqrt{7}$,$\overrightarrow a•(\overrightarrow b-\overrightarrow a)=-4$,则$\overrightarrow a$与$\overrightarrow b$夹角是(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,六面体ABCDE中,面DBC⊥面ABC,AE⊥面ABC.
(Ⅰ)求证:AE∥面DBC;
(Ⅱ)若AB⊥BC,BD⊥CD,求证:面ADB⊥面EDC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,输出的n值为(  )
A.4B.6C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某十字路口的信号灯为红灯和绿灯交替出现,红灯持续的时间为60秒,小明放学回家途经该路口遇到红灯,则小明至少要等15秒才能出现绿灯的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$=(1,3),向量$\overrightarrow{c}$满足|$\overrightarrow{c}$|=$\sqrt{10}$,若$\overrightarrow{a}$•$\overrightarrow{c}$=-5,则$\overrightarrow{a}$与$\overrightarrow{c}$的夹角大小为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.把[0,1]内的均匀随机数实施变换y=8*x-2可以得到区间(  )的均匀随机数.
A.[6,8]B.[-2,6]C.[0,2]D.[6,10]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在平行四边形ABCD中,AB=3,AD=2,$\overrightarrow{AP}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{AQ}$=$\frac{1}{2}$$\overrightarrow{AD}$,若$\overrightarrow{CP}$•$\overrightarrow{CQ}$=12,则∠BAD=(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

同步练习册答案