精英家教网 > 高中数学 > 题目详情
10.执行如图所示的程序框图,输出的n值为(  )
A.4B.6C.8D.12

分析 算法的功能是求S=$\frac{1}{3}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n}}$的值,利用等比数列的前n项和公式求得满足条件S>$\frac{1008}{2017}$的最小的n值.

解答 解:由程序框图知:算法的功能是求S=$\frac{1}{3}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n}}$的值,
∵S=$\frac{1}{3}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{3}^{n}}$=$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$>$\frac{1008}{2017}$⇒n>7,
∴跳出循环体的n值为8,∴输出n=8.
 故选C.

点评 本题考查了循环结构的程序框图,根据框图的流程判断是否的功能是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.某大学有甲、乙两个校区.从甲校区到乙校区有A、B两条道路.已知开车走道路A遭遇堵车的概率为$\frac{1}{5}$;开车走道路B遭遇堵车的概率为p.现有张、王、李三位教授各自开车从甲校区到乙校区给学生上课,张教授、王教授走道路A,李教授走道路B,且他们是否遭遇堵车相互之间没有影响.若三人中恰有一人遭遇堵车的概率为$\frac{2}{5}$.求:(I)走道路B遭遇堵车的概率p;
(Ⅱ)三人中遭遇堵车的人数X的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知三边长分别为4,5,6的△ABC的外接圆恰好是球O的一个大圆,P为球面上一点,若三棱锥P-ABC体积的最大值为(  )
A.8B.10C.12D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知F1,F2是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0$,b>0)的左、右焦点,若直线$y=\sqrt{3}x$与双曲线C交于P、Q两点,且四边形PF1QF2是矩形,则双曲线的离心率为(  )
A.$5-2\sqrt{5}$B.$5+2\sqrt{5}$C.$\sqrt{3}+1$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若复数$\frac{a+i}{1-i}$(i为虚数单位,a为实数)为纯虚数,则不等式|x+a|+|x|>3的解集为(  )
A.{x|x>1}B.{x|x<-2}C.{x|x<-1或x>2}D.{x|x<-2或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)是定义在R上的函数,f'(x)是f(x)的导函数.给出如下四个结论:
①若$f'(x)+\frac{f(x)}{x}>0$,且f(0)=e,则函数xf(x)有极小值0;
②若xf'(x)+2f(x)>0,则4f(2n+1)<f(2n),n∈N*
③若f'(x)-f(x)>0,则f(2017)>ef(2016);
④若f'(x)+f(x)>0,且f(0)=1,则不等式f(x)<e-x的解集为(0,+∞).
所有正确结论的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线ax+y=0截圆x2+y2-2x-6y+6=0所得的弦长为$2\sqrt{3}$,则实数a=(  )
A.2B.$\sqrt{3}$C.$-\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若“?x0∈R,|x0+1|+|x0-1|≤m”是真命题,则实数m的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线为$y=\sqrt{5}x$,则双曲线的离心率为(  )
A.$\frac{\sqrt{6}}{6}$B.2C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

同步练习册答案