精英家教网 > 高中数学 > 题目详情
1.已知三边长分别为4,5,6的△ABC的外接圆恰好是球O的一个大圆,P为球面上一点,若三棱锥P-ABC体积的最大值为(  )
A.8B.10C.12D.14

分析 利用正弦定理和余弦定理求出△ABC的外接圆的半径即球的半径,则当P到平面ABC的距离为球的半径时,棱锥的体积最大.

解答 解:设△ABC的最大角为α,则cosα=$\frac{{4}^{2}+{5}^{2}-{6}^{2}}{2×4×5}$=$\frac{1}{8}$,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{3\sqrt{7}}{8}$.
∴S△ABC=$\frac{1}{2}×4×5×sinα$=$\frac{15\sqrt{7}}{4}$.
设△ABC的外接圆半径为r,则$\frac{6}{sinα}$=2r,∴r=$\frac{8\sqrt{7}}{7}$.
∴当P到平面ABC的距离d=r时,三棱锥P-ABC体积取得最大值V=$\frac{1}{3}{S}_{△ABC}•r$=$\frac{1}{3}×\frac{15\sqrt{7}}{4}×\frac{8\sqrt{7}}{7}$=10.
故选:B.

点评 本题考查了棱锥的体积计算,正余弦定理解三角形,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),过双曲线上任意一点P分别作斜率为-$\frac{b}{a}$和$\frac{b}{a}$的两条直线l1和l2,设直线l1与x轴、y轴所围成的三角形的面积为S,直线l2与x轴、y轴所围成的三角形的面积为T,则S•T的值为$\frac{{a}^{2}{b}^{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱台ABCD-A1B1C1D1中,四边形ABCD是菱形,AB=2A1B1,AA1⊥平面ABCD.
(1)求证:BD⊥C1C;
(2)求证:C1C∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设向量$\overrightarrow{a}$=(-$\frac{1}{2}$,1),$\overrightarrow{b}$=(2,1),则|$\overrightarrow{a}$-$\overrightarrow{b}$|2=(  )
A.$\frac{25}{4}$B.$\frac{5}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若函数f(x)=(x-1)(x+2)(x2+ax+b)是偶函数,则f(x)的最小值为(  )
A.-$\frac{25}{4}$B.$\frac{7}{4}$C.-$\frac{9}{4}$D.$\frac{41}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow a,\overrightarrow b$满足$|\overrightarrow a|=1$,$|\overrightarrow a+\overrightarrow b|=\sqrt{7}$,$\overrightarrow a•(\overrightarrow b-\overrightarrow a)=-4$,则$\overrightarrow a$与$\overrightarrow b$夹角是(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}与{bn}满足an+1-an=2(bn+1-bn),n∈N+,bn=2n-1,且a1=2.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${c_n}=\frac{{{a_n}^n}}{{{b_n}^{n-1}}}$,Tn为数列{cn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,输出的n值为(  )
A.4B.6C.8D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.为了得到函数y=$\sqrt{2}$cos2x的图象,可以将函数y=sin2x+cos2x的图象至少向左平移$\frac{π}{8}$个单位.

查看答案和解析>>

同步练习册答案