精英家教网 > 高中数学 > 题目详情
12.如图,在四棱台ABCD-A1B1C1D1中,四边形ABCD是菱形,AB=2A1B1,AA1⊥平面ABCD.
(1)求证:BD⊥C1C;
(2)求证:C1C∥平面A1BD.

分析 (1)由AA1⊥平面ABCD,可证AA1⊥BD.四边形ABCD是菱形可得AC⊥BD,由线面垂直的判定定理可证BD⊥面ACC1A1,再由线面垂直的性质定理可证BD⊥CC1. 
(2)连接AC和A1C1,设AC∩BD=E,先证明四边形ECC1A1为平行四边形,可得CC1∥A1E,再由线面平行的判定定理可证CC1∥平面A1BD.

解答 证明:(1)∵AA1⊥平面ABCD,
∴AA1⊥BD.
∵四边形ABCD是菱形,∴AC⊥BD,
又 AC∩AA1=A,∴BD⊥面ACC1A1
由CC1?面ACC1A1
∴BD⊥CC1.                             
(2)连接AC和A1C1,设 AC∩BD=E,由于底面ABCD是平行四边形,故E为平行四边形ABCD的
中心,由棱台的定义及AB=2AD=2A1B1,可得 EC∥A1C1,且 EC=A1C1
故ECC1A1为平行四边形,∴CC1∥A1E,而CC1?平面A1BD,A1E?平面A1BD,
∴CC1∥平面A1BD.

点评 本题考查线面平行、垂直的判定定理、线面平行、垂直的性质定理的应用,体现了数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=ex-|ln(-x)|的两个零点为x1,x2,则(  )
A.x1x2<0B.x1x2=1C.x1x2>1D.0<x1x2<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,等边三角形ABC与等腰直角三角形DBC公共边BC,BC=$\sqrt{2}$,DB=DC,AD=$\sqrt{3}$.
(1)求证:BC⊥AD;
(2)求点B到平面ACD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某大学有甲、乙两个校区.从甲校区到乙校区有A、B两条道路.已知开车走道路A遭遇堵车的概率为$\frac{1}{5}$;开车走道路B遭遇堵车的概率为p.现有张、王、李三位教授各自开车从甲校区到乙校区给学生上课,张教授、王教授走道路A,李教授走道路B,且他们是否遭遇堵车相互之间没有影响.若三人中恰有一人遭遇堵车的概率为$\frac{2}{5}$.求:(I)走道路B遭遇堵车的概率p;
(Ⅱ)三人中遭遇堵车的人数X的概率分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若正数x,y满足$\frac{1}{y}+\frac{3}{x}=1$,则3x+4y的最小值是(  )
A.24B.28C.25D.26

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足$\left\{\begin{array}{l}x≥0\\ y≥0\\ \frac{x}{3}+\frac{y}{4}≤1\end{array}\right.$,则$\frac{x+2y+3}{x+1}$的取值范围是(  )
A.$[\frac{2}{3},11]$B.[3,11]C.$[\frac{3}{2},11]$D.[1,11]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数$f(x)=sinxcosx-{sin^2}(x-\frac{π}{4})(x∈R)$.
(1)求函数f(x)的单调区间;
(2)在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若$f(\frac{C}{2})=0$,c=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知三边长分别为4,5,6的△ABC的外接圆恰好是球O的一个大圆,P为球面上一点,若三棱锥P-ABC体积的最大值为(  )
A.8B.10C.12D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线ax+y=0截圆x2+y2-2x-6y+6=0所得的弦长为$2\sqrt{3}$,则实数a=(  )
A.2B.$\sqrt{3}$C.$-\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

同步练习册答案