精英家教网 > 高中数学 > 题目详情
7.已知向量$\overrightarrow{a}$=(1,3),向量$\overrightarrow{c}$满足|$\overrightarrow{c}$|=$\sqrt{10}$,若$\overrightarrow{a}$•$\overrightarrow{c}$=-5,则$\overrightarrow{a}$与$\overrightarrow{c}$的夹角大小为120°.

分析 根据平面向量数量积的定义,写出数量积公式,即可求出$\overrightarrow{a}$与$\overrightarrow{c}$的夹角大小.

解答 解:向量$\overrightarrow{a}$=(1,3),向量$\overrightarrow{c}$满足|$\overrightarrow{c}$|=$\sqrt{10}$,
∴|$\overrightarrow{c}$|=$\sqrt{{1}^{2}{+3}^{2}}$=$\sqrt{10}$,
∴$\overrightarrow{a}$•$\overrightarrow{c}$=-5,
∴|$\overrightarrow{a}$|×|$\overrightarrow{c}$|×cos<$\overrightarrow{a}$,$\overrightarrow{c}$>=$\sqrt{10}$×$\sqrt{10}$×cos<$\overrightarrow{a}$,$\overrightarrow{c}$>=-5,
∴cos<$\overrightarrow{a}$,$\overrightarrow{c}$>=-$\frac{1}{2}$,
∴$\overrightarrow{a}$与$\overrightarrow{c}$的夹角大小为120°.
故答案为:120°.

点评 本题考查了平面向量数量积的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足$\left\{\begin{array}{l}x≥0\\ y≥0\\ \frac{x}{3}+\frac{y}{4}≤1\end{array}\right.$,则$\frac{x+2y+3}{x+1}$的取值范围是(  )
A.$[\frac{2}{3},11]$B.[3,11]C.$[\frac{3}{2},11]$D.[1,11]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知F1,F2是双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0$,b>0)的左、右焦点,若直线$y=\sqrt{3}x$与双曲线C交于P、Q两点,且四边形PF1QF2是矩形,则双曲线的离心率为(  )
A.$5-2\sqrt{5}$B.$5+2\sqrt{5}$C.$\sqrt{3}+1$D.$\sqrt{3}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)是定义在R上的函数,f'(x)是f(x)的导函数.给出如下四个结论:
①若$f'(x)+\frac{f(x)}{x}>0$,且f(0)=e,则函数xf(x)有极小值0;
②若xf'(x)+2f(x)>0,则4f(2n+1)<f(2n),n∈N*
③若f'(x)-f(x)>0,则f(2017)>ef(2016);
④若f'(x)+f(x)>0,且f(0)=1,则不等式f(x)<e-x的解集为(0,+∞).
所有正确结论的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若直线ax+y=0截圆x2+y2-2x-6y+6=0所得的弦长为$2\sqrt{3}$,则实数a=(  )
A.2B.$\sqrt{3}$C.$-\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,点${P_n}({n,{S_n}})({n∈{N^*}})$是曲线f(x)=x2+2x上的点.数列{an}是等比数列,且满足b1=a1,b2=a4
(1)求数列{an},{bn}的通项公式;
(2)记${c_n}={({-1})^n}{a_n}+{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若“?x0∈R,|x0+1|+|x0-1|≤m”是真命题,则实数m的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个圆经过椭圆$\frac{{x}^{2}}{4}$+y2=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为(  )
A.(x-$\frac{3}{2}$)2+y2=$\frac{25}{4}$B.(x+$\frac{3}{4}$)2+y2=$\frac{25}{16}$C.(x-$\frac{3}{4}$)2+y2=$\frac{25}{16}$D.(x-$\frac{3}{4}$)2+y2=$\frac{25}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为$\frac{8}{3}$,则该几何体的俯视图可以是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案