精英家教网 > 高中数学 > 题目详情
20.某十字路口的信号灯为红灯和绿灯交替出现,红灯持续的时间为60秒,小明放学回家途经该路口遇到红灯,则小明至少要等15秒才能出现绿灯的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

分析 求出一名行人前30秒来到该路口遇到红灯,即可求出至少需要等待20秒才出现绿灯的概率.

解答 解:∵红灯持续时间为60秒,至少需要等待15秒才出现绿灯,
∴一名行人前45秒来到该路口遇到红灯,
∴至少需要等待15秒才出现绿灯的概率为$\frac{45}{60}$=$\frac{3}{4}$.
故选:C

点评 本题考查概率的计算,考查古典概型,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=x•ex,若关于x的方程$[{f(x)+\frac{1}{2e}}]•[{f(x)-λ}]=0$有仅有3个不同的实数解,则实数λ的取值范围是[0,+∞)∪{-$\frac{1}{e}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.圆C1:x2+y2+2ax+a2-9=0和圆C2:x2+y2-4by-1+4b2=0只有一条公切线,若a∈R,b∈R,且ab≠0,则$\frac{4}{a^2}+\frac{1}{b^2}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个几何体的三视图如右图所示,其中俯视图是一个正三角形及其内切圆,则该几何体的体积为(  )
A.$16\sqrt{3}-\frac{16π}{3}$B.$\frac{{16\sqrt{3}-16π}}{3}$C.$8\sqrt{3}-\frac{8π}{3}$D.$\frac{{8\sqrt{3}-8π}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)是定义在R上的函数,f'(x)是f(x)的导函数.给出如下四个结论:
①若$f'(x)+\frac{f(x)}{x}>0$,且f(0)=e,则函数xf(x)有极小值0;
②若xf'(x)+2f(x)>0,则4f(2n+1)<f(2n),n∈N*
③若f'(x)-f(x)>0,则f(2017)>ef(2016);
④若f'(x)+f(x)>0,且f(0)=1,则不等式f(x)<e-x的解集为(0,+∞).
所有正确结论的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点F(-c,0)(c>0)作圆${x^2}+{y^2}=\frac{a^2}{4}$的切线,切点为E,延长FE交双曲线右支于点P.若$\overrightarrow{OP}=2\overrightarrow{OE}-\overrightarrow{OF}$,则双曲线的渐近线方程为(  )
A.$\sqrt{10}x±2y=0$B.$2x±\sqrt{10}y=0$C.$\sqrt{6}x±2y=0$D.$2x±\sqrt{6}y=0$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,点${P_n}({n,{S_n}})({n∈{N^*}})$是曲线f(x)=x2+2x上的点.数列{an}是等比数列,且满足b1=a1,b2=a4
(1)求数列{an},{bn}的通项公式;
(2)记${c_n}={({-1})^n}{a_n}+{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,已知2a-b=2ccosB,则角C的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.?x0∈(2,+∞),k(x0-2)>x0(lnx0+1),则正整数k的最小值为5.
(参考数据:ln2≈0.6931,ln3≈1.0986,ln5≈1.6094)

查看答案和解析>>

同步练习册答案