| A. | $\sqrt{10}x±2y=0$ | B. | $2x±\sqrt{10}y=0$ | C. | $\sqrt{6}x±2y=0$ | D. | $2x±\sqrt{6}y=0$ |
分析 判断出E为PF的中点,据双曲线的特点知原点O为两焦点的中点;利用中位线的性质,求出PF′的长度及判断出PF′垂直于PF;通过勾股定理得到a,c的关系,再由c2=a2+b2,求出$\frac{b}{a}$=$\frac{\sqrt{6}}{2}$,问题得以解决.
解答 解:∵$\overrightarrow{OP}=2\overrightarrow{OE}-\overrightarrow{OF}$,![]()
∴$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OP}$+$\overrightarrow{OF}$)
∴E为PF的中点,令右焦点为F′,则O为FF′的中点,
则PF′=2OE=a,
∵E为切点,
∴OE⊥PF
∴PF′⊥PF
∵PF-PF′=2a
∴PF=PF′+2a=3a
在Rt△PFF′中,PF2+PF′2=FF′2
即9a2+a2=4c2=4(a2+b2),
∴3a2=2b2,
∴$\frac{b}{a}$=$\frac{\sqrt{6}}{2}$,
∴渐近线方程为y=±$\frac{\sqrt{6}}{2}$x,即$\sqrt{6}$x±2y=0,
故选:C
点评 本小题主要考查双曲线的简单性质、圆的方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,在圆锥曲线中,求离心率关键就是求三参数a,b,c的关系,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-1} | B. | {-2,-1} | C. | {-3,-2,-1,0} | D. | {-3,-2,-1,0,1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}-1}}{2}$ | B. | $\frac{{\sqrt{5}+1}}{2}$ | C. | $\frac{{3-\sqrt{5}}}{2}$ | D. | $\frac{{3+\sqrt{5}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com