精英家教网 > 高中数学 > 题目详情
15.在等比数列{an}中,已知a3,a7是方程x2-6x+1=0的两根,则a5=(  )
A.1B.-1C.±1D.3

分析 利用一元二次方程的根与系数的关系、等比数列的性质即可得出.

解答 解:∵a3,a7是方程x2-6x+1=0的两根,
∴a3•a7=1,a3+a7=6.∴a3>0,a7>6.∴a5>0.
则a5=$\sqrt{{a}_{3}{a}_{7}}$=1.
故选:A.

点评 本题考查了一元二次方程的根与系数的关系、等比数列的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,点P为椭圆C上任意一点,且|PF|的最小值为$\sqrt{2}$-1,离心率为$\frac{\sqrt{2}}{2}$,直线l与椭圆C交于不同两点A、B(A、B都在x轴上方),且∠OFA+∠OFB=180°.
(Ⅰ)求椭圆C的方程;
(Ⅱ)当A为椭圆与y轴正半轴的交点时,求直线l的方程;
(Ⅲ)对于动直线l,是否存在一个定点,无论∠OFA如何变化,直线l总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$,过x轴上点P的直线l与双曲线的右支交于M,N两点(M在第一象限),直线MO交双曲线左支于点Q(O为坐标原点),连接QN.若∠MPO=60°,∠MNQ=30°,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}中,an2+2an-n2+2n=0(n∈N+
(Ⅰ)求数列{an}的通项公式
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=x•ex,若关于x的方程$[{f(x)+\frac{1}{2e}}]•[{f(x)-λ}]=0$有仅有3个不同的实数解,则实数λ的取值范围是[0,+∞)∪{-$\frac{1}{e}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=\left\{\begin{array}{l}{log_2}(x-1),x≥2\\{x^2}-2x,x<2\end{array}\right.$,则f(f(3))=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.(2-i)(-2+i)=(  )
A.-5B.-3+4iC.-3D.-5+4i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={x|x2-2x-3<0},B={x|y=ln(2-x)},则A∩B=(  )
A.{x|-1<x<3}B.{x|-1<x<2}C.{x|-3<x<2}D.{x|1<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左焦点F(-c,0)(c>0)作圆${x^2}+{y^2}=\frac{a^2}{4}$的切线,切点为E,延长FE交双曲线右支于点P.若$\overrightarrow{OP}=2\overrightarrow{OE}-\overrightarrow{OF}$,则双曲线的渐近线方程为(  )
A.$\sqrt{10}x±2y=0$B.$2x±\sqrt{10}y=0$C.$\sqrt{6}x±2y=0$D.$2x±\sqrt{6}y=0$

查看答案和解析>>

同步练习册答案