分析 由题意可得两圆相内切,根据两圆的标准方程求出圆心和半径,可得a2+4b2=4,再利用“1”的代换,使用基本不等式求得$\frac{4}{a^2}+\frac{1}{b^2}$的最小值.
解答 解:由题意可得两圆相内切,两圆的标准方程分别为 (x+a)2+y2=9,x2+(y-2b)2=1,
圆心分别为(-a,0),(0,2b),半径分别为3和1,故有$\sqrt{{a}^{2}+4{b}^{2}}$=2,∴a2+4b2=4,
∴$\frac{4}{a^2}+\frac{1}{b^2}$=$\frac{1}{4}$($\frac{4}{a^2}+\frac{1}{b^2}$)(a2+4b2)=$\frac{1}{4}$(8+$\frac{16{b}^{2}}{{a}^{2}}$+$\frac{{a}^{2}}{{b}^{2}}$)≥4,
当且仅当$\frac{16{b}^{2}}{{a}^{2}}$=$\frac{{a}^{2}}{{b}^{2}}$时,等号成立,
∴$\frac{4}{a^2}+\frac{1}{b^2}$的最小值为4.
故答案为:4.
点评 本题考查两圆的位置关系,两圆相内切的性质,圆的标准方程的特征,基本不等式的应用,得到a2+4b2=4是解题的关键和难点.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-1,1,-$\frac{1}{2}$} | B. | {1,-$\frac{1}{2}$,$\frac{1}{2}$} | C. | {-1,1,-$\frac{1}{2}$,$\frac{1}{2}$} | D. | {-1,1,-2,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5π}{6}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{25}{4}$ | B. | $\frac{7}{4}$ | C. | -$\frac{9}{4}$ | D. | $\frac{41}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com