精英家教网 > 高中数学 > 题目详情
1.若函数f(x)=(x-1)(x+2)(x2+ax+b)的图象关于直线x=0对称,则f(x)的最小值为(  )
A.-$\frac{25}{4}$B.$\frac{7}{4}$C.-$\frac{9}{4}$D.$\frac{41}{4}$

分析 根据对称性求出a,b,利用导数研究函数的最值即可.

解答 解:函数f(x)=(x-1)(x+2)(x2+ax+b)的图象关于直线x=0对称,
∴f(-1)=f(1),f(-2)=f(2),
即-2(1-a+b)=0,0=4•(4+2a+b),求得b=-2,a=-1,
∴f(x)=(x-1)(x+2)(x2-x-2  )=x4-5x2+4,
∴f′(x)=4x3-10x=2x(2x2-5)=2x($\sqrt{2}$x-$\sqrt{5}$)•($\sqrt{2}$x+$\sqrt{5}$).
显然,在(-∞,-$\frac{\sqrt{10}}{2}$),(0,$\frac{\sqrt{10}}{2}$)上,f′(x)<0,f(x)为减函数;
在($-\frac{\sqrt{10}}{2}$,0),($\frac{\sqrt{10}}{2}$,+∞)上,f′(x)>0,f(x)为增函数,
故当x=$-\frac{\sqrt{10}}{2}$时,y=$-\frac{9}{4}$,x=$\frac{\sqrt{10}}{2}$时,y=$-\frac{9}{4}$,
函数y取得最小值为$-\frac{9}{4}$,
故选:C.

点评 本题主要考查函数最值的区间,根据对称性求出a,b的值,利用导数研究函数的单调性和函数的最值求法等知识,综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.圆C1:x2+y2+2ax+a2-9=0和圆C2:x2+y2-4by-1+4b2=0只有一条公切线,若a∈R,b∈R,且ab≠0,则$\frac{4}{a^2}+\frac{1}{b^2}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,点${P_n}({n,{S_n}})({n∈{N^*}})$是曲线f(x)=x2+2x上的点.数列{an}是等比数列,且满足b1=a1,b2=a4
(1)求数列{an},{bn}的通项公式;
(2)记${c_n}={({-1})^n}{a_n}+{b_n}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,已知2a-b=2ccosB,则角C的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.一个圆经过椭圆$\frac{{x}^{2}}{4}$+y2=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为(  )
A.(x-$\frac{3}{2}$)2+y2=$\frac{25}{4}$B.(x+$\frac{3}{4}$)2+y2=$\frac{25}{16}$C.(x-$\frac{3}{4}$)2+y2=$\frac{25}{16}$D.(x-$\frac{3}{4}$)2+y2=$\frac{25}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列四个结论:
①若x>0,则x>sinx恒成立;
②命题“若x-sinx=0,则x=0”的逆否命题为“若x≠0,则x-sinx≠0”;
③“命题p∧q为真”是“命题p∨q为真”的充分不必要条件;
④命题“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”.
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=\left\{{\begin{array}{l}{x+1,(x≤1)}\\{-x+1,(x>1)}\end{array}}\right.$,则f[f(2)]=(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.?x0∈(2,+∞),k(x0-2)>x0(lnx0+1),则正整数k的最小值为5.
(参考数据:ln2≈0.6931,ln3≈1.0986,ln5≈1.6094)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线y=2b与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左支、右支分别交于A、B两点,O为坐标原点,且△AOB为等腰直角三角形,则该双曲线的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{3}{2}$C.$\frac{\sqrt{30}}{5}$D.$\frac{3\sqrt{5}}{5}$

查看答案和解析>>

同步练习册答案