精英家教网 > 高中数学 > 题目详情
6.下列四个结论:
①若x>0,则x>sinx恒成立;
②命题“若x-sinx=0,则x=0”的逆否命题为“若x≠0,则x-sinx≠0”;
③“命题p∧q为真”是“命题p∨q为真”的充分不必要条件;
④命题“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”.
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

分析 构造函数,利用导数研究其单调性判断①;写出命题的逆否命题判断②;由复合命题的真假判断结合充分必要条件的判定方法判断③,写出全称命题的否定判断④.

解答 解:①令f(x)=x-sinx,则f′(x)=1-cosx≥0,
∴f(x)在(0,+∞)上为增函数,则x>0时,f(x)>f(0)=0,
∴若x>0,则x>sinx恒成立,故①正确;
②命题“若x-sinx=0,则x=0”的逆否命题为“若x≠0,则x-sinx≠0”,故②正确;
③若命题p∧q为真,则p真且q真,∴命题p∨q为真;反之,若命题p∨q为真,则p真或q真,则命题p∧q不一定为真,
∴“命题p∧q为真”是“命题p∨q为真”的充分不必要条件,故③正确;
④命题“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”,故④正确.
∴正确命题的个数是4个.
故选:D.

点评 本题考查命题的真假判断与应用,考查了复合命题的真假判断,考查充分必要条件的判定方法,训练了利用导数研究函数的单调性,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知$\frac{\overline z}{1+2i}=2+i$,则复数z+5的实部与虚部的和为(  )
A.10B.-10C.0D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在${({x+\frac{2}{{\sqrt{x}}}})^4}$的展开式中,x的系数为24.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={-3,-2,-1},B={x|(x-1)(x+2)≤0,x∈Z},则A∪B=(  )
A.{-1}B.{-2,-1}C.{-3,-2,-1,0}D.{-3,-2,-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=(x-1)(x+2)(x2+ax+b)的图象关于直线x=0对称,则f(x)的最小值为(  )
A.-$\frac{25}{4}$B.$\frac{7}{4}$C.-$\frac{9}{4}$D.$\frac{41}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为(0,-1),离心率e=$\frac{\sqrt{2}}{2}$.
(1)求椭圆C的方程;
(2)过M(0,m)(-1<m<0)的直线L交椭圆C于A、B两点,试问:在椭圆C上是否存在定点T,使得无论直线L如何转动,以AB为直径的圆恒过定点T?若存在,求出m的值及点T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.
(1)求证:PA∥面BDE;
(2)求证:平面PAC⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知等比数列{an}的各项都为正数,且a3,$\frac{1}{2}{a_5},{a_4}$成等差数列,则$\frac{{{a_3}+{a_5}}}{{{a_4}+{a_6}}}$的值是(  )
A.$\frac{{\sqrt{5}-1}}{2}$B.$\frac{{\sqrt{5}+1}}{2}$C.$\frac{{3-\sqrt{5}}}{2}$D.$\frac{{3+\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某人吃完饭后散步,在0到3小时内速度与时间的关系为v=t3-3t2+2t(km/h),这3小时内他走过的路程为(  )
A.$\frac{9}{4}km$B.$\frac{10}{4}km$C.$\frac{11}{4}km$D.$\frac{13}{4}km$

查看答案和解析>>

同步练习册答案