精英家教网 > 高中数学 > 题目详情
18.如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.
(1)求证:PA∥面BDE;
(2)求证:平面PAC⊥平面BDE.

分析 (1)连接OE,由中位线定理可知PA∥OE,故而PA∥面BDE;
(2)由BD⊥OP,BD⊥AC得出BD⊥平面PAC,从而得出平面PAC⊥平面BDE.

解答 证明:(1)连接OE,
∵ABCD是正方形,O是正方形的中心,
∴O是AC的中点,又E是PC的中点,
∴OE∥PA,
又PA?平面BDE,OE?平面BDE,
∴PA∥面BDE.
(2)∵PO⊥底面ABCD,BD?平面ABCD,
∴PO⊥BD,
∵ABCD是正方形,
∴AC⊥BD,
又PO?平面PAC,AC?平面PAC,PO∩AC=O,
∴BD⊥平面PAC,
又BD?平面BDE,
∴平面PAC⊥平面BDE.

点评 本题考查了线面平行,线面垂直的判定,面面垂直的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.一个几何体的三视图如右图所示,其中俯视图是一个正三角形及其内切圆,则该几何体的体积为(  )
A.$16\sqrt{3}-\frac{16π}{3}$B.$\frac{{16\sqrt{3}-16π}}{3}$C.$8\sqrt{3}-\frac{8π}{3}$D.$\frac{{8\sqrt{3}-8π}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,已知2a-b=2ccosB,则角C的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列四个结论:
①若x>0,则x>sinx恒成立;
②命题“若x-sinx=0,则x=0”的逆否命题为“若x≠0,则x-sinx≠0”;
③“命题p∧q为真”是“命题p∨q为真”的充分不必要条件;
④命题“?x∈R,x-lnx>0”的否定是“?x0∈R,x0-lnx0≤0”.
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=\left\{{\begin{array}{l}{x+1,(x≤1)}\\{-x+1,(x>1)}\end{array}}\right.$,则f[f(2)]=(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.我国古代数学典籍《九章算术》第七章“盈不足”中有一问题:
“今有蒲生一日,长三尺.莞生一日,长一尺.蒲生日自半.莞生日自倍.问几何日而长等?”(蒲常指一种多年生草本植物,莞指水葱一类的植物)
现欲知几日后,莞高超过蒲高一倍.为了解决这个新问题,设计右面的程序框图,输入A=3,a=1.那么在①处应填(  )
A.T>2S?B.S>2T?C.S<2T?D.T<2S?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.?x0∈(2,+∞),k(x0-2)>x0(lnx0+1),则正整数k的最小值为5.
(参考数据:ln2≈0.6931,ln3≈1.0986,ln5≈1.6094)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\overrightarrow a$,$\overrightarrow b$为单位向量,其夹角为120°,则$(\overrightarrow a-2\overrightarrow b)•\overrightarrow b$=(  )
A.$-\frac{5}{2}$B.$-\frac{3}{2}$C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.甲、乙、丙、丁、戊5名学生各自在3门数学选修课:数学史、数学建模和几何画板中任选一门学习,则这三门课程都有同学选修且甲不选修几何画板的概率为(  )
A.$\frac{2}{3}$B.$\frac{96}{125}$C.$\frac{32}{81}$D.$\frac{100}{243}$

查看答案和解析>>

同步练习册答案