精英家教网 > 高中数学 > 题目详情
定义运算:a*b=
a,(ab>0)
b,(ab≤0)
,则函数f(x)=x*
1
x-1
的值域为
 
考点:函数的值域
专题:函数的性质及应用
分析:由新定义确定分段函数在各段上f(x)的表达式,画函数的图象,从而求出值域.
解答: 解:由题意,
①当x×
1
x-1
>0时,也即x<0\或x>1时,函数f(x)=x;
①当x×
1
x-1
≤0时,也即0≤x<1时,函数f(x)=
1
x-1

函数f(x)的图象:

从图象上得知:函数f(x)的值域是(-∞,0)∪(1,+∞).
故答案为:(-∞,0)∪(1,+∞).
点评:考查了函数的值域的求法,同时考查了学生对新定义的接受能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果曲线C上任意一点的坐标都是方程F(x,y)=0的解,那么下列命题正确的是(  )
A、曲线C的方程是F(x,y)=0
B、曲线C上的点都在方程F(x,y)=0的曲线上
C、方程F(x,y)=0的曲线是C
D、以方程F(x,y)=0解为坐标点都在曲线C上

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,E为AD上一点,PE⊥平面ABCD,AD∥BC,AD⊥CD,BC=ED=2AE,F为PC上一点,且CF=2FP. 
(Ⅰ)求证:PA∥平面BEF;
(Ⅱ)求三棱锥P-ABF与三棱锥F-EBC的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:(m+1)x-(m-a)y+2=0,直线l2:3x+my-1=0,且l1⊥l2,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alog2x+blog4x+2,且f(
1
2014
)=4,则f(2014)的值为(  )
A、-4B、2C、0D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+3x2-6在区间(1,2)上存在零点,若用二分法分析函数的零点,则下一步确定函数零点所在的区间为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求倾斜角为45°,且与点(2,-1)的距离为
2
2
的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题甲:若x,y∈R,则|x|>1是x>1是充分而不必要条件;命题乙:函数y=
|x-1|-2
的定义域是(-∞,-1]∪[3,+∞),则(  )
A、“甲或乙”为假
B、“甲且乙”为真
C、甲真乙假
D、甲假乙真

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(a-3)x+2,x≤1
-x2+(a2-4)x-8,x>1
是单调递减函数,求a的取值范围.

查看答案和解析>>

同步练习册答案