精英家教网 > 高中数学 > 题目详情
已知点P(x,y)对应的复数z满足|z|=1,则点Q(x+y,xy)的轨迹是(  )
A、圆B、抛物线的一部分C、椭圆D、双曲线的一部分
分析:根据复数的模|z|=
x2+y2
,把点P(x,y)对应的复数z满足|z|=1,再利用配方法,即可求得点Q(x+y,xy)的轨迹,注意纵坐标的范围.
解答:解:由题意知x2+y2=1,∴(x+y)2-2xy=1.
令x+y=m,xy=n,则有m2-2n=1,∴m2=2n+1.
又∵2|xy|≤x2+y2=1,∴-
1
2
≤n≤
1
2

∴点Q的轨迹是抛物线的一部分.
故选B.
点评:考查代入法求轨迹方程,抛物线的方程和复数模的运算,在计算过程中注意整体代换,和利用基本不等式求坐标的范围,增加了题目的难度,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两点F1(-
2
,0)
F2(
2
,0)
,曲线C上的动点P(x,y)满足
.
PF1
.
PF2
+|
.
PF1
|×|
.
PF2
|=2.
(I)求曲线C的方程;
(II)设直线l:y=kx+m(k≠0),对定点A(0,-1),是否存在实数m,使直线l与曲线C有两个不同的交点M、N,满足|AM|=|AN|?若存在,求出m的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x,y)为椭圆
x2
4
+y2=1
上一点,F1、F2为椭圆左、右焦点,下列结论中:①△PF1F2面积的最大值为
2
;②若过点P、F2的直线l与椭圆的另一交点为Q,则△PF1Q的周长为8;③若过点P、F2的直线l与椭圆的另一交点为Q,则恒有
|PF2|+|QF2|
|PF2|•|QF2|
=4
;对定点A(
3
2
1
2
)
,则|
PA
|+|
PF2
|
的取值范围为[4-
7
,4+
7
.其中正确结论的番号是
②③④
②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知点P(x,y)为椭圆数学公式上一点,F1、F2为椭圆左、右焦点,下列结论中:①△PF1F2面积的最大值为数学公式;②若过点P、F2的直线l与椭圆的另一交点为Q,则△PF1Q的周长为8;③若过点P、F2的直线l与椭圆的另一交点为Q,则恒有数学公式;对定点数学公式,则数学公式的取值范围为数学公式.其中正确结论的番号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P(x,y)为椭圆
x2
4
+y2=1
上一点,F1、F2为椭圆左、右焦点,下列结论中:①△PF1F2面积的最大值为
2
;②若过点P、F2的直线l与椭圆的另一交点为Q,则△PF1Q的周长为8;③若过点P、F2的直线l与椭圆的另一交点为Q,则恒有
|PF2|+|QF2|
|PF2|•|QF2|
=4
;对定点A(
3
2
1
2
)
,则|
PA
|+|
PF2
|
的取值范围为[4-
7
,4+
7
.其中正确结论的番号是______.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省镇江市扬中二中高三(上)期末数学模拟试卷(解析版) 题型:解答题

圆锥曲线上任意两点连成的线段称为弦.若圆锥曲线上的一条弦垂直于其对称轴,我们将该弦称之为曲线的垂轴弦.已知点P(
x,y)、M(m,n)是圆锥曲线C上不与顶点重合的任意两点,MN是垂直于x轴的一条垂轴弦,直线MP,NP分别交x轴于点E(xE,0)和点F(xF,0).
(Ⅰ)试用x,y,m,n的代数式分别表示xE和xF
(Ⅱ)已知“若点P(x,y)是圆C:x2+y2=R2上的任意一点,MN是垂直于x轴的垂轴弦,直线MP、NP分别交x轴于点E(xE,0)和点F(xF,0),则”.类比这一结论,我们猜想:“若曲线C的方程为(如图),则xE•xF也是与点M、N、P位置无关的定值”,请你对该猜想给出证明.

查看答案和解析>>

同步练习册答案