精英家教网 > 高中数学 > 题目详情

【题目】如图所示,四棱锥B-AEDC中,平面AEDC⊥平面ABC,FBC的中点,PBD的中点,且AE//DC,ACD=BAC=90°,DC=AC=AB=2AE

(1)证明:EP⊥平面BCD;

(2)DC=2,求三棱锥E-BDF的体积.

【答案】(1)见解析(2)

【解析】试题分析:(1)先根据等腰三角形性质得,再根据面面垂直性质得平面.,即得,从而可由线面垂直判定定理得平面.最后根据平行四边形性质得即得结论,(2)因为平面,所以根据锥体体积公式求体积.

试题解析:((Ⅰ)由题意知为等腰直角三角形,

的中点,所以.

又因为平面平面,且

所以平面.

平面,所以.

所以平面.

连结,

所以是平行四边形,因此平面.

Ⅱ)因为平面,所以平面是三棱锥的高.

所以. 于是三棱锥的体积为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设椭圆)的右焦点为,右顶点为,已知,其中为原点,为椭圆的离心率.

(Ⅰ)求椭圆的方程;

(Ⅱ)设过点的直线与椭圆交于点不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校研究性学习小组从汽车市场上随机抽取辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程),被调查汽车的续驶里程全部介于公里和公里之间将统计结果分成绘制成如图所示的频率分布直方图.

(1)求直方图中的值

(2)求续驶里程在的车辆数

(3)若从续驶里程在的车辆中随机抽取辆车,求其中恰有一辆车的续驶里程在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二年级800名学生参加了地理学科考试,现从中随机选取了40名学生的成绩作为样本,已知这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组;第二组……;第六组,并据此绘制了如图所示的频率分布直方图.

1)求每个学生的成绩被抽中的概率;

2)估计这次考试地理成绩的平均分和中位数;

3)估计这次地理考试全年级80分以上的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M是满足下列性质的函数的全体:在定义域内存在,使函数成立;

1)请给出一个的值,使函数

2)函数是否是集合M中的元素?若是,请求出所有组成的集合;若不是,请说明理由;

3)设函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.

(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算均值;

(2)试从两位考生正确完成题数的均值及至少正确完成2题的概率分析比较两位考生的实验操作能力.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司想了解对某产品投入的宣传费用与该产品的营业额的影响.右图是以往公司对该产品的宣传费用 (单位:万元)和产品营业额 (单位:万元)的统计折线图.

(Ⅰ)根据折线图可以判断,可用线性回归模型拟合宣传费用与产品营业额的关系,请用相关系数加以说明;

(Ⅱ)建立产品营业额关于宣传费用的回归方程;

(Ⅲ)若某段时间内产品利润与宣传费和营业额的关系为应投入宣传费多少万元才能使利润最大,并求最大利润. (计算结果保留两位小数)

参考数据:

参考公式:相关系数,回归方程中斜率和截距的最小二乘法估计公式分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥,底面为矩形, 且侧面平面,侧面平面为正三角形,

(1)求证:

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某支教队有8名老师,现欲从中随机选出2名老师参加志愿活动,

(1)若规定选出的至少有一名女老师,则共有18种不同的需安排方案,试求该支教队男、女老师的人数;

(2)在(1)的条件下,记为选出的2位老师中女老师的人数,写出的分布列.

查看答案和解析>>

同步练习册答案