精英家教网 > 高中数学 > 题目详情
已知双曲线的中心在原点,焦点在坐标轴上,离心率e=
3
,焦距为2
3

(1)求该双曲线方程.
(2)是否定存在过点P(1,1)的直线l与该双曲线交于A,B两点,且点P是线段AB的中点?若存在,请求出直线l的方程,若不存在,说明理由.
考点:双曲线的简单性质
专题:计算题,存在型,直线与圆,圆锥曲线的定义、性质与方程
分析:(1)设出双曲线方程,由条件可得c,再由离心率公式.可得a,再由a,b,c的关系,可得b,进而得到双曲线方程;
(2)假设存在,设过P(1,1)的直线方程为:y-1=k(x-1),A,B两点的坐标为(x1,y1),(x2,y2),代入双曲线方程,再相减,运用平方差公式和中点坐标公式,及斜率公式,即可得到所求直线的斜率,进而得到直线方程,检验判别式即可判断.
解答: 解:(1)设双曲线方程为:
x2
a2
-
y2
b2
=1(a,b>0)
由离心率e=
3
,焦距为2
3
,则c=
3
,a=1,b2=c2-a2=2,
则双曲线方程为:x2-
y2
2
=1;
(2)假设存在过点P(1,1)的直线l与该双曲线交于A,B两点,
且点P是线段AB的中点.
设过P(1,1)的直线方程为:y-1=k(x-1),
A,B两点的坐标为(x1,y1),(x2,y2),
则2x12-y12=2,2x22-y22=2,
相减可得,2(x1-x2)(x1+x2)=(y1-y2)(y1+y2
由P为AB的中点,则x1+x2=2,y1+y2=2,
则k=
y1-y2
x1-x2
=2,
即有直线AB的方程:y-1=2(x-1),即有y=2x-1,
代入双曲线方程2x2-y2=2,可得,2x2-4x+3=0,
检验判别式为16-24<0,方程无解.
故不存在过点P(1,1)的直线l与该双曲线交于A,B两点,
且点P是线段AB的中点.
点评:本题考查双曲线的方程、性质和运用,考查点差法求中点问题,注意检验判别式的符号,考查运算能力,属于中档题和易错题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l与函数f(x)=1n x的图象相切于点(1,0),且l与函数g(x)=
1
2
x2+mx+
7
2
(m<0)图象也相切.
(1)求直线l的方程及m的值;
(2)若h(x)=f(x+1)-g′(x),求函数h(x)的最大值;
(3)当0<a<1时,求证:f(1+a)-f(2)<
a-1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

求导:
①y=log3x2
②y=23x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的三角方程sin(x+
π
4
)-sin2x=a有实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,正方形ABCD的边长为1,AP⊥平面ABCD,且AP=
2
,则PC与平面PAB所成的角是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,?ABCD中,点M是AB的中点,CM与BD相交于点N,若
BN
BD
,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1=2,an+1=an+
1
an
(n=1,2,…).
(1)求a2,a3,a4的值;
(2)比较an
2n+1
的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1、F2,若双曲线C上存在点M,满足
1
2
|MF1|=|MO|=|MF2|,则双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}:a1,a2,a3,…,an,如果数列{bn}:b1,b2,b3,…,bn满足b1=an,bk=ak-1+ak-bk-1,其中k=2,3,…n,则称{bn}为{an}的“衍生数列”.若数列{an}:a1,a2,a3,a4,的“衍生数列”是5,-2,7,2,则{an}为
 
;若n为偶数,且{an}的“衍生数列”是{bn},则{bn}的“衍生数列”是
 

查看答案和解析>>

同步练习册答案