精英家教网 > 高中数学 > 题目详情
已知,正方形ABCD的边长为1,AP⊥平面ABCD,且AP=
2
,则PC与平面PAB所成的角是
 
考点:直线与平面所成的角
专题:空间角
分析:画出图形,利用已知判断BC⊥平面PAB,找到PC与平面PAB所成的角,然后通过解直角三角形求大小.
解答: 解:如图,因为底面是正方形,AP⊥平面ABCD,
所以AP⊥BC,又BC⊥AB,
所以BC⊥平面PAB,
所以∠BPC为PC与平面PAB所成的角,
正方形ABCD的边长为1,AP=
2

所以PB=
PA2+AB2
=
3

tan∠BPC=
BC
PB
=
1
3
=
3
3

所以∠BPC=
π
6
点评:本题考查了线面垂直的性质、判定以及线面角的求法,关键是找到角所在,然后解三角形计算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设直线l过双曲线C在x轴上的一个焦点,且与y轴平行,l与C交于A、B两点,线段|AB|的长为双曲线C的实轴长的3倍,则C的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=Acos(ωx+φ)(A,ω,φ是常数,A>0,ω>0).若f(x)在区间[
π
4
π
2
]上具有单调性,且f(
π
2
)=f(
3
)=-f(
π
4
),则f(x)的最小正周期为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-
y2
3
=1的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则
PA1
PF2
最小值为(  )
A、-2
B、-
81
16
C、1
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+x2-xlna,a>1.
(Ⅰ)求证:函数f(x)在(0,+∞)上单调递增;
(Ⅱ)若方程|f(x)-t|=1有三个不同的实根,求t的值;
(Ⅲ)对任意x1,x2∈[-1,1],|f(x1)-f(x2)|≤e-1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的中心在原点,焦点在坐标轴上,离心率e=
3
,焦距为2
3

(1)求该双曲线方程.
(2)是否定存在过点P(1,1)的直线l与该双曲线交于A,B两点,且点P是线段AB的中点?若存在,请求出直线l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
x2(x≥-1)
-
1
x
(x<-1)
,已知方程f2(x)+af(x)+b=0恰好有三个互异的实数根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,设点P(x,y),定义[OP]=|x|+|y|,其中O为坐标原点.对于下列结论:
(1)符合[OP]=1的点P的轨迹围成的图形的面积为2;
(2)设点P是直线:
5
x+2y-2=0上任意一点,则[OP]min=
2
5
5

(3)设点P是直线:y=kx+1(k∈R)上任意一点,则“使得[OP]最小的点P有无数个”的充要条件是“k=±1”;
(4)设点P是椭圆
x2
4
+y2=1上任意一点,则[OP]max=5.
其中正确的结论序号为(  )
A、(1)、(2)、(3)
B、(1)、(3)、(4)
C、(2)、(3)、(4)
D、(1)、(2)、(4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3x2+a,若f(x+1)是奇函数,则曲线y=f(x)在点(0,a)处的切线方程是
 

查看答案和解析>>

同步练习册答案