精英家教网 > 高中数学 > 题目详情
设函数f(x)=Acos(ωx+φ)(A,ω,φ是常数,A>0,ω>0).若f(x)在区间[
π
4
π
2
]上具有单调性,且f(
π
2
)=f(
3
)=-f(
π
4
),则f(x)的最小正周期为
 
考点:三角函数的周期性及其求法,余弦函数的图象
专题:三角函数的图像与性质
分析:由题意可得可得函数f(x)的一条对称轴方程为x=
π
2
+
3
2
=
12
,x=
π
2
离最近对称轴距离为
12
-
π
2
=
π
12
π
4
离最近对称轴的距离也为
π
12
,可得
T
2
=2×
π
12
+(
π
2
-
π
4
),由此求得周期T的值.
解答: 解:由f(
π
2
)=f(
3
),可得函数f(x)的一条对称轴
方程为x=
π
2
+
3
2
=
12

则x=
π
2
离最近对称轴距离为
12
-
π
2
=
π
12

又f(
π
2
)=-f(
π
4
),且f(x)在区间[
π
4
π
2
]上具有单调性,
π
4
离最近对称轴的距离也为
π
12

T
2
=2×
π
12
+(
π
2
-
π
4
)=
12
,∴T=
6

故答案为:
6
点评:本题考查f(x)=Asin(ωx+φ)型图象的形状,考查了学生灵活处理问题和解决问题的能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

分别以双曲线G:
x2
2
-
y2
2
=1的焦点为顶点,以双曲线G的顶点为焦点作椭圆C.
(1)求椭圆C的方程;
(2)设点P的坐标为(0,
2
)
,在y轴上是否存在定点M,过点M且斜率为k的动直线l交椭圆于A、B两点,使以AB为直径的圆恒过点P,若存在,求出M的坐标和△PAB面积的最大值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
16
-
y2
9
=1,P为双曲线上一点,F1,F2是双曲线的两个焦点,且∠F1PF2=
π
3
,则△F1PF2的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在(0,+∞)上的增函数,且f(x)=f(
x
y
)+f(y),若f(3)=1,f(x)-f(
1
x-5
)≥2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
与向量
b
反向,且|
a
|=r,|
b
|=R,
b
a
,则λ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求导:
①y=log3x2
②y=23x

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是⊙C:(x-1)2+(y-
3
2=1上的一个动点,A(
3
,1),则
OP
OA
的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,正方形ABCD的边长为1,AP⊥平面ABCD,且AP=
2
,则PC与平面PAB所成的角是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a>0,a≠1,p:loga(x+3)在(0,+∞)单调增,q:x2+(2a-3)+1的图象与x轴交于不同的两点,若p∨q为真,p∧q为假,求a范围.

查看答案和解析>>

同步练习册答案