精英家教网 > 高中数学 > 题目详情
19.将四个不同颜色的乒乓球随机放入编号分别为1,2,3,4的四个盒子中(每个盒子足够大).
(1)求编号为1的盒子为空盒的概率;
(2)求空盒的个数ξ的分布列和数学期望E(ξ).

分析 (1)将四个不同颜色的乒乓球随机放入编号分别为1,2,3,4的四个盒子中,由分步剩法计数原理知共有44种放法,设事件A表示“编号为1的盒子为空盒”,则四个乒乓球可以随机放入编号为2,3,4的三个盒子中,共有34种放法,由此能求出编号为1的盒子为空盒的概率.
(2)空盒的个数ξ的所有可能取值为0,1,2,3,分别求出相应的概率,由此能求出空盒的个数ξ的分布列和数学期望E(ξ).

解答 解:(1)将四个不同颜色的乒乓球随机放入编号分别为1,2,3,4的四个盒子中,
由分步剩法计数原理知共有44=256种放法,
设事件A表示“编号为1的盒子为空盒”,
则四个乒乓球可以随机放入编号为2,3,4的三个盒子中,共有34=81种放法,
故编号为1的盒子为空盒的概率为$P(A)=\frac{81}{256}$.
(2)空盒的个数ξ的所有可能取值为0,1,2,3,
则$P({ξ=0})=\frac{A_4^4}{256}=\frac{24}{256}=\frac{3}{32}$,
$P({ξ=1})=\frac{C_4^2C_4^3A_3^3}{256}=\frac{144}{256}=\frac{9}{16}$,
$P({ξ=3})=\frac{C_4^1}{256}=\frac{4}{256}=\frac{1}{64}$,
$P({ξ=2})=\frac{{C_4^1C_4^2A_2^2+\frac{C_4^2C_2^2}{A_2^2}C_4^2A_2^2}}{256}=\frac{84}{256}=\frac{21}{64}$
(或$P({ξ=2})=1-P({ξ=0})-P({ξ=1})-P({ξ=3})=\frac{21}{64}$),
所以ξ的分布列为

ξ0123
P$\frac{3}{32}$$\frac{9}{16}$$\frac{21}{64}$$\frac{1}{64}$
ξ的数学期望为$E(ξ)=0×\frac{3}{32}+1×\frac{9}{16}+2×\frac{21}{64}+3×\frac{1}{64}=\frac{81}{64}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知n=${∫}_{0}^{2}$x3dx,则(x-$\frac{2}{\root{3}{3}}$)n的展开式中常数项为$\frac{16\root{3}{9}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2-x(4x-m)是奇函数,g(x)=lg(10x+1)+nx是偶函数
(1)求m+n的值;
(2)设h(x)=f(x)+g(x)+$\frac{1}{2}$x,试求h(x)在x∈[-1,2]时的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.抛物线x2=4ay(a≠0)的焦点坐标是(  )
A.(a,0)B.(-a,0)C.(0,a)D.(0,-a)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=cos2x+2sinxcosx,则下列说法正确的是(  )
A.若f(x1)=f(x2),则x1+x2=kπ
B.f(x)的图象关于点$({-\frac{3π}{8},0})$对称
C.f(x)的图象关于直线$x=\frac{5π}{8}$对称
D.f(x)的图象向右平移$\frac{π}{4}$个单位长度后得$g(x)=\sqrt{2}sin({2x+\frac{3π}{4}})$的图象

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}为等差数列,公差为d,{bn}为等比数列,公比为q,a1=1,a1+a3=b2,2a22=b3
(1)求d与q的函数关系式;
(2)当d=3,且b1=2;
(I)求{bn}的通项公式;
(II)若cn=$\frac{{n}^{2}}{{a}_{n}{b}_{n}+1}$的前n项和为Tn,求证Tn>$\frac{8}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.非零向量$\overrightarrow a$,$\overrightarrow b$不共线且$\overrightarrow n=2\overrightarrow a+3\overrightarrow b$,向量$\overrightarrow m$同时垂直于$\overrightarrow a$、$\overrightarrow b$,则(  )
A.$\overrightarrow m∥\overrightarrow n$B.$\overrightarrow m⊥\overrightarrow n$
C.$\overrightarrow m$与$\overrightarrow n$既不平行也不垂直D.以上情况均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设命题p:实数x满足x2-4x+3<0,命题q:满足$\left\{\begin{array}{l}{{x}^{2}-x-6≤0}\\{{x}^{2}+2x-8>0}\end{array}\right.$,p∧q为假,p∨q为真,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知正方体ABCD-A1B1C1D1的棱长为a,AC1与BD1相交于点O,则有(  )
A.$\overrightarrow{AB}•\overrightarrow{{A_1}{C_1}}={a^2}$B.$\overrightarrow{AB}•\overrightarrow{A{C_1}}=\sqrt{2}{a^2}$C.$\overrightarrow{AB}•\overrightarrow{AO}=\frac{{\sqrt{3}}}{2}{a^2}$D.$\overrightarrow{BC}•\overrightarrow{D{A_1}}={a^2}$

查看答案和解析>>

同步练习册答案