分析 (1)函数f(x)是奇函数,且在x=0处有意义,得f(0)=0,解得m,g(x)是偶函数利用g(-x)=g(x)解得n,从而得m+n的值.
(2)由(1)可得h(x)=f(x)+g(x)+$\frac{1}{2}$x=2x-2-x+lg(10x+1),且h(x)在[-1,2]为增函数,故可求出最值.
解答 解:(1)∵函数f(x)=2-x(4x-m)是奇函数且定义域为R,
∴f(0)=1-m=0,解得m=1
∵g(x)=lg(10x+1)+nx是偶函数.
∴g(-x)=lg(10-x+1)-nx=lg$\frac{1{0}^{X}+1}{1{0}^{X}}$-nx=lg(10x+1)-x-nx=lg(10x+1)-(n+1)x
=g(x)=lg(10x+1)+nx,
∴n=-(n+1),∴n=-$\frac{1}{2}$,
∴m+n=$\frac{1}{2}$,
(2)由(1)可得(x)+1=2-x(4x-1)=2x-2-x,
g(x)=lg(10x+1)-$\frac{1}{2}$x,
∴h(x)=f(x)+g(x)+$\frac{1}{2}$x=2x-2-x+lg(10x+1),
∵h(x)在[-1,2]为增函数,
∴h(x)max=h(2)=$\frac{15}{4}$+lg101,
h(x)min=h(-1)=lg11-$\frac{5}{2}$
点评 本题考查了函数奇偶性的性质,单调性的判断和运用,考查学生分析解决问题的能力.是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 6 | C. | 3+$\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com