精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=2-x(4x-m)是奇函数,g(x)=lg(10x+1)+nx是偶函数
(1)求m+n的值;
(2)设h(x)=f(x)+g(x)+$\frac{1}{2}$x,试求h(x)在x∈[-1,2]时的最值.

分析 (1)函数f(x)是奇函数,且在x=0处有意义,得f(0)=0,解得m,g(x)是偶函数利用g(-x)=g(x)解得n,从而得m+n的值.
(2)由(1)可得h(x)=f(x)+g(x)+$\frac{1}{2}$x=2x-2-x+lg(10x+1),且h(x)在[-1,2]为增函数,故可求出最值.

解答 解:(1)∵函数f(x)=2-x(4x-m)是奇函数且定义域为R,
∴f(0)=1-m=0,解得m=1
∵g(x)=lg(10x+1)+nx是偶函数.
∴g(-x)=lg(10-x+1)-nx=lg$\frac{1{0}^{X}+1}{1{0}^{X}}$-nx=lg(10x+1)-x-nx=lg(10x+1)-(n+1)x
=g(x)=lg(10x+1)+nx,
∴n=-(n+1),∴n=-$\frac{1}{2}$,
∴m+n=$\frac{1}{2}$,
(2)由(1)可得(x)+1=2-x(4x-1)=2x-2-x
g(x)=lg(10x+1)-$\frac{1}{2}$x,
∴h(x)=f(x)+g(x)+$\frac{1}{2}$x=2x-2-x+lg(10x+1),
∵h(x)在[-1,2]为增函数,
∴h(x)max=h(2)=$\frac{15}{4}$+lg101,
h(x)min=h(-1)=lg11-$\frac{5}{2}$

点评 本题考查了函数奇偶性的性质,单调性的判断和运用,考查学生分析解决问题的能力.是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.甲乙两人下中国象棋,甲不输的概率为80%,乙不输的概率为70%,则甲乙两人和棋的概率为(  )
A.20%B.30%C.50%D.60%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)是奇函数,g(x)是偶函数,且f(-2)+g(2)=2,f(2)+g(-2)=4,则f(2)=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.A、B、C三个集合,满足A∪B=B∩C,则以下一定正确的是(  )
A.A⊆CB.A=CC.A=∅D.A≠C

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.面积为$\sqrt{3}$的等边三角形绕其一边上的中线旋转所得圆锥的侧面积是2π..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某几何体的三视图如图所示,其中三个图中的四边形均为边长为1的正方形,则此几何体的表面积可以是(  )
A.3B.6C.3+$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知 $\overrightarrow a$=(2sinx,sinx-cosx),$\overrightarrow b$=($\sqrt{3}$cosx,sinx+cosx),记函数$f(x)=\overrightarrow a•\overrightarrow b$
(1)求函数f(x)取最大值时x的取值集合;
(2)设△ABC的角A,B,C所对的边分别为a,b,c,若a=2csinA,c=$\sqrt{7}$,且△ABC的面积为$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.将四个不同颜色的乒乓球随机放入编号分别为1,2,3,4的四个盒子中(每个盒子足够大).
(1)求编号为1的盒子为空盒的概率;
(2)求空盒的个数ξ的分布列和数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$\overrightarrow a=(\sqrt{3}sinx-cosx,1)$,$\overrightarrow b=(cosx,m)$,函数f(x)=$\vec a•\vec b$(m∈R)的图象过点M($\frac{π}{12}$,0).
(Ⅰ)若x∈[0,π],求函数f(x)的单调增区间;
(Ⅱ)在△ABC中,角A,B,C的对边分别是a,b,c.若ccosB+bcosC=2acosB,求f(A)的取值范围.

查看答案和解析>>

同步练习册答案