精英家教网 > 高中数学 > 题目详情
3.甲乙两人下中国象棋,甲不输的概率为80%,乙不输的概率为70%,则甲乙两人和棋的概率为(  )
A.20%B.30%C.50%D.60%

分析 甲不输的概率为80%,其中包括甲获胜和甲乙两人下成平局两种情况,两数相减即可.

解答 解:甲不输,即为甲获胜或甲、乙二人下成和棋,
设甲、乙二人下成和棋的概率为P,
则由题意可得 80%=30%+p,
∴p=50%.
故选:C.

点评 本题考查的是互斥事件的概率加法公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.(Ⅰ)点P的直角坐标为$(-\sqrt{2},\sqrt{2})$,求它的极坐标(写出一个即可);
(Ⅱ)在同一平面直角坐标系中,经过伸缩变换$\left\{{\begin{array}{l}{x'=5x}\\{y'=3y}\end{array}}\right.$后,曲线C变为曲线2x'2+8y'2=1,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.下列图形:①三角形;②直线;③平行四边形;④四面体;⑤球.其中投影不可能是线段的是②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某商店计划每天购进某商品若干件,商店每销售一件该商品可获利润60元,若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利40元.
(Ⅰ)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式;
(Ⅱ)商店记录了50天该商品的日需求量n(单位:件,n∈N),整理得如表:
日需求量789101112
频数48101495
若商店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间[500,650]内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“ω=2”是函数f(x)=cos2$\frac{1}{2}$ωx-sin2 $\frac{1}{2}$ωx的最小正周期为π的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2acosx(${\sqrt{3}$sinx+cosx)+a2,其中a为常数且a>0.
(Ⅰ)若对于任意x∈R都有f(x)<4恒成立,求a的取值范围;
(Ⅱ)若f(-$\frac{π}{6}}$)=4,求关于x的不等式f(x)>8的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下面四种说法:
①正态分布N(μ,σ2)在区间(-∞,μ)内取值的概率小于0.5;
②正态曲线f(x)=$\frac{1}{\sqrt{2π}σ}{e}^{\frac{(x-μ)^{2}}{2{σ}^{2}}}$越关于直线x=μ对称;
③服从于正态分布N(μ,σ2)的随机变量在(μ-3σ,μ+3σ)以外取值的情况在一次试验中几乎不可能发生;
④当μ一定时,σ越小,曲线越“矮胖”.
其中正确的序号是(  )
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知n=${∫}_{0}^{2}$x3dx,则(x-$\frac{2}{\root{3}{3}}$)n的展开式中常数项为$\frac{16\root{3}{9}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2-x(4x-m)是奇函数,g(x)=lg(10x+1)+nx是偶函数
(1)求m+n的值;
(2)设h(x)=f(x)+g(x)+$\frac{1}{2}$x,试求h(x)在x∈[-1,2]时的最值.

查看答案和解析>>

同步练习册答案