分析 (1)利用向量的乘积的运算求出f(x)的解析式,化简,结合三角函数的性质求解.
(2)利用正余弦定理求解a+b的值.
解答 解:(1)由题意,得$f(x)=\overrightarrow a•\overrightarrow b=\sqrt{3}sin2x-cos2x=2sin(2x-\frac{π}{6})$,
当函数f(x)取最大值,即$sin(2x-\frac{π}{6})$=1时:$2x-\frac{π}{6}=2kπ+\frac{π}{2}$(k∈Z),
解得:x=$kπ+\frac{π}{3}$,
所以:f(x)取最大值时x的取值集合为{x|x=$kπ+\frac{π}{3}$};
(2)∵a=2csinA,
由正弦定理得,$\frac{a}{sinA}$=$\frac{c}{sinC}$
∴$\frac{2csinA}{sinA}$=$\frac{c}{sinC}$
∵sinA≠0,
∴sinC=$\frac{1}{2}$,
∴C=$\frac{π}{3}$.
∵△ABC面积为$\frac{3\sqrt{3}}{2}$,
∴S△ABC=$\frac{1}{2}$absin$\frac{π}{3}$=$\frac{3\sqrt{3}}{2}$,
解得:ab=6.①
∵c=$\sqrt{7}$,
∴由余弦定理得a2+b2-2abcos$\frac{π}{3}$=7,
即a2+b2-ab=7.②
由②变形得(a+b)2=3ab+7.③
将①代入③得(a+b)2=25,
故a+b=5.
点评 本题考查了向量的乘积运算以及三角函数性质的运用能力,考了正余弦定理的运用.属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ②④ | C. | ①④ | D. | ②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若f(x1)=f(x2),则x1+x2=kπ | |
| B. | f(x)的图象关于点$({-\frac{3π}{8},0})$对称 | |
| C. | f(x)的图象关于直线$x=\frac{5π}{8}$对称 | |
| D. | f(x)的图象向右平移$\frac{π}{4}$个单位长度后得$g(x)=\sqrt{2}sin({2x+\frac{3π}{4}})$的图象 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow m∥\overrightarrow n$ | B. | $\overrightarrow m⊥\overrightarrow n$ | ||
| C. | $\overrightarrow m$与$\overrightarrow n$既不平行也不垂直 | D. | 以上情况均有可能 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15π | B. | 17π | C. | 19π | D. | 21π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com