精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,.

(Ⅰ)求证:

(Ⅱ)求直线与平面所成角的正弦值.

【答案】(1)见解析(2)

【解析】试题分析:(1)第(Ⅰ)问,直接转化为证明平面. (2)第(Ⅱ)问,可以利用几何法求,也可以利用向量法求直线与平面所成角的正弦值.

试题解析:(Ⅰ)如图,取的中点,连结.

因为为正三角形,所以

因为,所以.

平面

所以平面.

因为平面,所以.

(Ⅱ)解法一:过点的垂线,垂足为,连结.

因为平面平面,所以平面平面,又平面平面平面,故平面.所以直线与平面所成角为.

中,

由余弦定理得 ,所以.

所以.又

,即直线与平面所成角的正弦值为.

解法二:如图,以原点,以轴建立空间直角坐标系.

可求得,则.

平面的一个法向量为.

设直线与平面所成角为,则 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】命题:指数函数是减函数;命题,使关于的方程有实数解,其中.

(1)当时,若为真命题,求的取值范围;

(2)当时,若为假命题,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体中,分别是棱的中点,为棱上一点,平面.

(1)证明:中点;

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是

A. 165 cmB. 175 cmC. 185 cmD. 190cm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆为左右焦点,为短轴端点,长轴长为4,焦距为,且,的面积为.

(Ⅰ)求椭圆的方程

(Ⅱ)设动直线椭圆有且仅有一个公共点,且与直线相交于点.试探究:在坐标平面内是否存在定点,使得以为直径的圆恒过点?若存在求出点的坐标,若不存在.请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为分别为的右顶点和上顶点,且.

(Ⅰ)求椭圆的方程;

(Ⅱ)若分别是轴负半轴,轴负半轴上的点,且四边形的面积为2,设直线的交点为,求点到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解学生的课外阅读时间情况,某学校随机抽取了 50人进行统计分析,把这50人每天阅读的时间(单位:分钟)绘制成频数分布表,如下表所示:

若把每天阅读时间在60分钟以上(含60分钟)的同学称为“阅读达人”,根据统计结果中男女生阅读达人的数据,制作出如图所示的等高条形图.

(1)根据抽样结果估计该校学生的每天平均阅读时间(同一组数据用该区间的中点值作为代表);

(2)根据已知条件完成下面的列联表,并判断是否有的把握认为“阅读达人”跟性别有关?

附:参考公式

,其中.

临界值表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)已知fx)的图象关于原点对称,求实数的值;

2)若,已知常数满足:对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣alnx+(a+1)x﹣(a>0).

(1)讨论函数f(x)的单调性;

(2)若f(x)≥﹣+ax+b恒成立,求a时,实数b的最大值.

查看答案和解析>>

同步练习册答案