精英家教网 > 高中数学 > 题目详情
4.在△ABC中,角A,B,C的对边分别为a,b,c,若a2+b2=c2+$\sqrt{2}$ab,则C=(  )
A.60°B.120°C.45°D.135°

分析 由题意可得a2+b2-c2=$\sqrt{2}$ab,整体代入余弦定理可得cosC,由三角形内角的范围可得C值.

解答 解:在△ABC中,∵a2+b2=c2+$\sqrt{2}$ab,
∴a2+b2-c2=$\sqrt{2}$ab,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{\sqrt{2}ab}{2ab}$=$\frac{\sqrt{2}}{2}$,
又∵0°<C<180°,∴C=45°,
故选:C.

点评 本题考查余弦定理,整体代入是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow a$,$\overrightarrow b$满足:|$\overrightarrow a$|=1,|$\overrightarrow b$|=6,$\overrightarrow a$•($\overrightarrow b$-$\overrightarrow{a}$)=2
(1)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角
(2)求|2$\overrightarrow a$-$\overrightarrow b$|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前n项和为Sn,a1=10,an+1=9Sn+10.
(1)求数列{an}的通项公式;
(2)设Tn是数列{$\frac{1}{lg{a}_{n}•lg{a}_{n+1}}$}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=2.
(1)若$\overrightarrow{a}$、$\overrightarrow{b}$的夹角为45°,求|$\overrightarrow{a}$+$\overrightarrow{b}$|
(2)若($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{a}$,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{logabn}(a>0且a≠1)是首项为2,公差为1的等差数列,若数列{an}是递增数列,且满足an=bnlgbn,则实数a的取值范围是(  )
A.($\frac{2}{3}$,1)B.(2,+∞)C.($\frac{2}{3}$,1)∪(1,+∞)D.(0,$\frac{2}{3}$)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给定命题:p:x<3,q:$\frac{3-x}{x-2}$>0,则p是q的(  )
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.一组数据x1,x2,…,x5的平均数为5,x${\;}_{1}^{2}$,x${\;}_{2}^{2}$,…,x${\;}_{5}^{2}$的平均数为33,则数据x1,x2,…,x5的方差为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}满足a1=1,a${\;}_{n+1}^{2}$-${a}_{n}^{2}$=2(n∈N*).
(1)若数列{an}中的每一项均为正数,求数列{an}的通项公式;
(2)若数列{bn}满足bn=$\frac{{a}_{n}^{2}}{{2}^{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{3}$)两条相邻的对称轴之间的距离为$\frac{π}{2}$,若其图象向右平移$\frac{π}{3}$个单位后得到的函数为奇函数,则函数f(x)(  )
A.关于点($\frac{π}{12}$,0)对称B.关于点($\frac{5π}{12}$,0)对称
C.关于直线x=$\frac{5π}{12}$对称D.关于直线x=$\frac{π}{12}$对称

查看答案和解析>>

同步练习册答案