精英家教网 > 高中数学 > 题目详情
3.已知:
2+$\frac{2}{3}$=4×$\frac{2}{3}$,
3+$\frac{3}{8}$=9×$\frac{3}{8}$,
4+$\frac{4}{15}$=16×$\frac{4}{15}$,
…,
观察以上等式,若8+$\frac{8}{m}$=k×$\frac{8}{n}$(m,n,k均为实数),则m+k-n=64.

分析 观察已知等式寻找规律,再根据8+$\frac{8}{m}$=k×$\frac{8}{n}$求得m,n,k值,即可求m+k-n.

解答 解:通过观察可得,n+$\frac{n}{{n}^{2}-1}$=${n}^{2}×\frac{n}{{n}^{2}-1}$(n≥2,n∈N*),
所以由8+$\frac{8}{m}$=k×$\frac{8}{n}$,得n=m=82-1=63,k=82=64,
所以m+k-n=k=64.
故答案为:64

点评 本题考查类比推理,考查学生观察推理能力,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知等比数列a1,a2,a3的和为定值m(m>0)且公比为负数,则a1a2a3的最小值 为-m3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知定义在R上的函数f(x)的对称轴为x=-5,且当x≥-5时,f(x)=2x-3.若函数f(x)在区间(k,k+1)(k∈Z)上有零点,则k的值为(  )
A.2或-11B.2或-12C.1或-12D.1或-11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.数列an=2n-1(n∈N+)排出如图所示的三角形数阵,设2015位于数阵中第s行,第t列,则s+t=63.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设a=$\frac{1}{2}cos6°$-$\frac{{\sqrt{3}}}{2}sin6°$,b=cos26°•$\frac{2tan13°}{{1-{{tan}^2}13°}}$,c=$\sqrt{\frac{1-cos50°}{2}}$,则有(  )
A.a>b>cB.a<b<cC.a<c<bD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=klnx+1(k∈R),函数g(x)=f(x2-4x+5),若存在实数k使得关于x的方程g(x)+sin$\frac{π}{4}$x=0有且只有6个实数根,则这6个根的和为(  )
A.B.6C.12D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x-a|+|2x-1|(a∈R).
(Ⅰ)当a=1时,求f(x)≤2的解集;
(Ⅱ)若f(x)≤|2x+1|的解集包含集合[$\frac{1}{2}$,1],求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求不等式|1-2x|<5和不等式|1-2x|>2的解集的交集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线l:x-ky+k-1=0与圆C:x2+y2=3的位置关系为(  )
A.l与C相交B.l与C相切
C.l与C相离D.以上三个选项都有可能

查看答案和解析>>

同步练习册答案