精英家教网 > 高中数学 > 题目详情
已知函数f(x)=xe-x(x∈R)
(Ⅰ)求函数f(x)的单调区间和极值;
(Ⅱ)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明:当x>1时,f(x)>g(x);
(Ⅲ)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2.
分析:(1)先求导求出导数为零的值,通过列表判定导数符号,确定出单调性和极值.
(2)先利用对称性求出g(x)的解析式,比较两个函数的大小可将它们作差,研究新函数的最小值,使最小值大于零,不等式即可证得.
(3)通过题意分析先讨论,可设x1<1,x2>1,利用第二问的结论可得f(x2)>g(x2),根据对称性将g(x2)换成f(2-x2),再利用单调性根据函数值的大小得到自变量的大小关系.
解答:解:(Ⅰ)解:f′(x)=(1-x)e-x
令f′(x)=0,解得x=1
当x变化时,f′(x),f(x)的变化情况如下表
精英家教网
所以f(x)在(-∞,1)内是增函数,在(1,+∞)内是减函数.
函数f(x)在x=1处取得极大值f(1)且f(1)=
1
e


(Ⅱ)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)ex-2
令F(x)=f(x)-g(x),即F(x)=xe-x+(x-2)ex-2
于是F'(x)=(x-1)(e2x-2-1)e-x
当x>1时,2x-2>0,从而e2x-2-1>0,又e-x>0,所以f′(x)>0,从而函数F(x)在[1,+∞)是增函数.
又F(1)=e-1-e-1=0,所以x>1时,有f(x)>F(1)=0,即f(x)>g(x).

(Ⅲ)证明:(1)若(x1-1)(x2-1)=0,由(I)及f(x1)=f(x2),则x1=x2=1.与x1≠x2矛盾.
(2)若(x1-1)(x2-1)>0,由(I)及f(x1)=f(x2),得x1=x2.与x1≠x2矛盾.
根据(1)(2)得(x1-1)(x2-1)<0,不妨设x1<1,x2>1.
由(Ⅱ)可知,f(x2)>g(x2),
则g(x2)=f(2-x2),
所以f(x2)>f(2-x2),
从而f(x1)>f(2-x2).
因为x2>1,所以2-x2<1,
又由(Ⅰ)可知函数f(x)在区间(-∞,1)内是增函数,
所以x1>2-x2,即x1+x2>2.
点评:本小题主要考查导数的应用,利用导数研究函数的单调性与极值等基础知识,考查运算能力及用函数思想分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案