精英家教网 > 高中数学 > 题目详情
如图,已知抛物线C:y2=4x,过点A(1,2)作抛物线C的弦AP,AQ.
(Ⅰ)若AP⊥AQ,证明直线PQ过定点,并求出定点的坐标;
(Ⅱ)假设直线PQ过点T(5,-2),请问是否存在以PQ为底边的等腰三角形APQ?若存在,求出△APQ的个数?如果不存在,请说明理由.

【答案】分析:(I)设直线l的方程与抛物线方程联立,利用AP⊥AQ,结合韦达定理,即可证明直线PQ过定点,并可求出定点的坐标;
(II)先求出PQ的中点坐标,再结合三角形APQ为等腰三角形求出关于m的等式,借助于函数的单调性求出m的取值个数即可得到结论.
解答:(Ⅰ)证明:设直线PQ的方程为x=my+n,点P、Q的坐标分别为P(x1,y1),Q(x2,y2).
直线方程代入抛物线方程,消x得y2-4my-4n=0.
由△>0,得m2+n>0,y1+y2=4m,y1•y2=-4n.
∵AP⊥AQ,∴,∴(x1-1)(x2-1)+(y1-2)(y2-2)=0.
∴(y1-2)(y2-2)[(y1+2)(y2+2)+16]=0,
∴(y1-2)(y2-2)=0或(y1+2)(y2+2)+16=0.
∴n=2m-1或n=2m+5,∵△>0恒成立,∴n=2m+5.
∴直线PQ的方程为x-5=m(y+2),
∴直线PQ过定点(5,-2).
(Ⅱ)解:假设存在以PQ为底边的等腰三角形APQ,由第(Ⅰ)问可知,将n用2m+5代换得直线PQ的方程为x=my+2m+5.设点P、Q的坐标分别为P(x1,y1),Q(x2,y2),直线方程代入抛物线方程,消x得y2-4my-8m-20=0.
∴y1+y2=4m,y1•y2=-8m-20.
∴PQ的中点坐标为(2m2+2m+5,2m).
由已知得,即m3+m2+3m-1=0.
设g(m)=m3+m2+3m-1,则g′(m)=3m2+2m+3>0,
∴g(m)在R上是增函数.
又g(0)=-1<0,g(1)=4>0,∴g(m)在(0,1)内有一个零点.
∴函数g(m)在R上有且只有一个零点,即方程m3+m2+3m-1=0在R上有唯一实根.
所以满足条件的等腰三角形有且只有一个.
点评:本题主要考查直线与抛物线的综合问题.解决第一问的巧妙之处在于直线方程的设法.当直线的斜率不确定存在时,为避免讨论,常设直线方程为x=my+n的形式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线C:y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点. A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M(O为坐标原点).
(Ⅰ)求抛物线C的方程;
(Ⅱ)过M作MN⊥FA,垂足为N,求点N的坐标;
(Ⅲ)以M为圆心,4为半径作圆M,点P(m,0)是x轴上的一个动点,试讨论直线AP与圆M的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知抛物线C:x2=2py(p>0)与圆O:x2+y2=8相交于A、B两点,且
OA
OB
=0
(O为坐标原点),直线l与圆O相切,切点在劣弧AB(含A、B两点)上,且与抛物线C相交于M、N两点,d是M、N两点到抛物线C的焦点的距离之和.
(Ⅰ)求p的值;
(Ⅱ)求d的最大值,并求d取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武昌区模拟)如图,已知抛物线C:y2=4x,过点A(1,2)作抛物线C的弦AP,AQ.
(Ⅰ)若AP⊥AQ,证明直线PQ过定点,并求出定点的坐标;
(Ⅱ)假设直线PQ过点T(5,-2),请问是否存在以PQ为底边的等腰三角形APQ?若存在,求出△APQ的个数?如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•徐州一模)如图,已知抛物线C:y2=4x的焦点为F,过F的直线l与抛物线C交于A(x1,y1)(y1>0),B(x2,y2)两点,T为抛物线的准线与x轴的交点.
(1)若
TA
TB
=1
,求直线l的斜率;
(2)求∠ATF的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知抛物线C:y2=4x焦点为F,直线l经过点F且与抛物线C相交于A、B两点.
(Ⅰ)若线段AB的中点在直线y=2上,求直线l的方程;
(Ⅱ)若|AB|=20,求直线l的方程.

查看答案和解析>>

同步练习册答案