精英家教网 > 高中数学 > 题目详情

【题目】交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为,其范围为,分为五个级别, 畅通; 基本畅通; 轻度拥堵; 中度拥堵; 严重拥堵.早高峰时段(),从某市交通指挥中心随机选取了三环以内的50个交通路段,依据其交通指数数据绘制的频率分布直方图如图.

(1)这50个路段为中度拥堵的有多少个?

(2)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?

(3)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟,中度拥堵为42分钟,严重拥堵为60分钟,求此人所用时间的数学期望.

【答案】(1)18(2)39.96

【解析】试题分析:(1)频率直方图中小矩形的面积等于该段的概率,由此可以得出中度拥堵的概率,继而得出这50个路段中中度拥挤的有多少个;

记事件为一个路段严重拥堵,其概率,则

所以三个路段至少有一个严重拥堵的概率为

(3)根据频率分布直方图列出分布列,即可求得数学期望.

试题解析:

(1),这50路段为中度拥堵的有18个.

(2)设事件 “一个路段严重拥堵”,则

事件三个都未出现路段严重拥堵,则

所以三个路段至少有一个是严重拥堵的概率是.

(3)由频率分布直方图可得:分布列如下表:

30

36

42

60

0.1

0.44

0.36

0.1

.

此人经过该路段所用时间的数学期望是39.96分钟.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数(其中上的单调性正好相反,回答下列问题:

(1)对于不等式恒成立,求实数的取值范围;

(2)令,两正实数满足求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的左焦点F为圆的圆心,且椭圆C上的点到点F的距离最小值为

I)求椭圆C的方程;

II)已知经过点F的动直线与椭圆C交于不同的两点AB,点M坐标为),证明: 为定值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求同时满足条件:①与轴相切,②圆心在直线上,③直线被截得的弦长为的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为,第二小组频数为.

(1)学生跳绳次数的中位数落在哪个小组内?

(2)第二小组的频率是多少?样本容量是多少?

(3)若次数在以上(含次)为良好,试估计该学校全体高一学生的良好率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

已知函数

(Ⅰ)已知常数解关于的不等式

(Ⅱ)若函数的图象恒在函数图象的上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,直线,设圆的半径为1且关于直线l对称.

(1)若圆心在直线上,过点作圆的切线,求切线的方程;

(2)点关于点的对称点为B若圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}的各项均为正数,且a1a100+a3a98=8,则log2a1+log2a2+…+log2a100=(
A.10
B.50
C.100
D.1000

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为,其离心率,以原点为圆心,椭圆的半焦距为半径的圆与直线相切.

(1)求的方程;

(2)过的直线两点, 的中点,连接并延长交于点,若四边形的面积满足: ,求直线的斜率.

查看答案和解析>>

同步练习册答案