【题目】交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为,其范围为,分为五个级别, 畅通; 基本畅通; 轻度拥堵; 中度拥堵; 严重拥堵.早高峰时段(),从某市交通指挥中心随机选取了三环以内的50个交通路段,依据其交通指数数据绘制的频率分布直方图如图.
(1)这50个路段为中度拥堵的有多少个?
(2)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?
(3)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟,中度拥堵为42分钟,严重拥堵为60分钟,求此人所用时间的数学期望.
【答案】(1)18(2)39.96
【解析】试题分析:(1)频率直方图中小矩形的面积等于该段的概率,由此可以得出中度拥堵的概率,继而得出这50个路段中中度拥挤的有多少个;
记事件为一个路段严重拥堵,其概率,则,
所以三个路段至少有一个严重拥堵的概率为;
(3)根据频率分布直方图列出分布列,即可求得数学期望.
试题解析:
(1),这50路段为中度拥堵的有18个.
(2)设事件 “一个路段严重拥堵”,则,
事件三个都未出现路段严重拥堵,则
所以三个路段至少有一个是严重拥堵的概率是.
(3)由频率分布直方图可得:分布列如下表:
30 | 36 | 42 | 60 | |
0.1 | 0.44 | 0.36 | 0.1 |
.
此人经过该路段所用时间的数学期望是39.96分钟.
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的左焦点F为圆的圆心,且椭圆C上的点到点F的距离最小值为。
(I)求椭圆C的方程;
(II)已知经过点F的动直线与椭圆C交于不同的两点A、B,点M坐标为(),证明: 为定值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为,第二小组频数为.
(1)学生跳绳次数的中位数落在哪个小组内?
(2)第二小组的频率是多少?样本容量是多少?
(3)若次数在以上(含次)为良好,试估计该学校全体高一学生的良好率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,点,直线,设圆的半径为1且关于直线l对称.
(1)若圆心在直线上,过点作圆的切线,求切线的方程;
(2)点关于点的对称点为B,若圆上存在点,使,求圆心的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的各项均为正数,且a1a100+a3a98=8,则log2a1+log2a2+…+log2a100=( )
A.10
B.50
C.100
D.1000
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 的左、右焦点分别为,其离心率,以原点为圆心,椭圆的半焦距为半径的圆与直线相切.
(1)求的方程;
(2)过的直线交于两点, 为的中点,连接并延长交于点,若四边形的面积满足: ,求直线的斜率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com