精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=$\frac{{x}^{2}}{1+{x}^{2}}$.
(1)分别求f(2)+f($\frac{1}{2}$),f(3)+f($\frac{1}{3}$),f(4)+f($\frac{1}{4}$)的值,并归纳猜想一般性结论,并给出证明;
(2)求值:f(1)+f(2)+f(3)+…+f(2016)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2016}$).

分析 (1)代入数据计算即可发现规律;利用解析式化简即可证明;
(2)根据(1)的结论计算.

解答 解:(1)f(2)+f($\frac{1}{2}$)=$\frac{4}{5}+$$\frac{\frac{1}{4}}{1+\frac{1}{4}}$=$\frac{4}{5}+\frac{1}{5}$=1,
f(3)+f($\frac{1}{3}$)=$\frac{9}{10}$+$\frac{1}{10}$=1,f(4)+f($\frac{1}{4}$)=$\frac{16}{17}+\frac{1}{17}$=1.
猜想:f(n)+f($\frac{1}{n}$)=1,
证明:f(n)+f($\frac{1}{n}$)=$\frac{{n}^{2}}{1+{n}^{2}}$+$\frac{\frac{1}{{n}^{2}}}{1+\frac{1}{{n}^{2}}}$=$\frac{{n}^{2}}{1+{n}^{2}}$+$\frac{1}{1+{n}^{2}}$=1.
(2)∵f(n)+f($\frac{1}{n}$)=1,f(1)=$\frac{1}{2}$,
∴f(1)+f(2)+f(3)+…+f(2016)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2016}$)
=$\frac{1}{2}+$2015=$\frac{4031}{2}$.

点评 本题考查了函数值计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.用秦九韶算法求多项式f(x)=9x6+7x5+3x4+2x2-5,当x=4时的值时,先算的是(  )
A.4×4=16B.9×4=36C.4×4×4=64D.9×4+7=43

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A、B、C所对的边分别为a、b、c.
(1)若a、b、c成等比数列,且$cosB=\frac{3}{5}$,求cotA+cotC的值;
(2)若A、B、C成等差数列,且b=2,求△ABC 的周长l的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.等差数列{an}满足a3=10,a5=4.数列的前n项和为Sn
(1)求数列{an}的通项公式;
(2)求S10
(3)求前n项和Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.过点A(4,a)和B(5,b)的直线与y=x+m平行,则|AB|的值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.把一条正态曲线a沿着横轴方向向右移动2个单位,得到新的一条曲线b,下列说法中不正确的是(  )
A.曲线b仍然是正态曲线
B.曲线a和曲线b的最高点的纵坐标相等
C.以曲线b为正态分布的总体的方差比以曲线a为正态分布的总体的方差大2
D.以曲线b为正态分布的总体的期望比以曲线a为正态分布的总体的期望大2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=3x-x3的极大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象如图所示,则f(0)的值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设点P(x,y)在不等式组$\left\{\begin{array}{l}x≥1\\ 2x-y≤0\\ x+y-6≤0\end{array}\right.$所表示的平面区域内,则$z=\frac{y}{x}$的取值范围为(  )
A.(2,5)B.[2,5)C.(2,5]D.[2,5]

查看答案和解析>>

同步练习册答案