【题目】设椭圆C:过点,离心率为 .
(1)求椭圆C的方程;
(2)设斜率为1的直线过椭圆C的左焦点且与椭圆C相交于A,B两点,求AB的中点M的坐标.
科目:高中数学 来源: 题型:
【题目】已知直线l1:2x-y+6=0和直线l2:x=-1,F是抛物线C:y2=4x的焦点,点P在抛物线C上运动,当点P到直线l1和直线l2的距离之和最小时,直线PF被抛物线所截得的线段长是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)同时满足以下三个性质;①f(x)的最小正周期为π;②对任意的x∈R,都有f(x﹣ )=f(﹣x);③f(x)在( , )上是减函数.则f(x)的解析式可能是( )
A.f(x)=cos(x+ )
B.f(x)=sin2x﹣cos2x
C.f(x)=sinxcosx
D.f(x)=sin2x+cos2x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率
(I)求椭圆的标准方程;
(II)与圆相切的直线交椭圆于、两点,若椭圆上一点满足,求实数的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= sin(ωx+φ)+2sin2 ﹣1(ω>0,0<φ<π)为奇函数,且相邻两对称轴间的距离为 .
(1)当x∈(﹣ , )时,求f(x)的单调递减区间;
(2)将函数y=f(x)的图象沿x轴方向向右平移 个单位长度,再把横坐标缩短到原来的 (纵坐标不变),得到函数y=g(x)的图象.当x∈[﹣ , ]时,求函数g(x)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱锥P﹣ABC,PA⊥平面ABC,∠ACB=90°,∠BAC=60°,PA=AC,M为PB的中点.
(Ⅰ)求证:PC⊥BC.
(Ⅱ)求二面角M﹣AC﹣B的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆()的离心率为,以该椭圆上的点和椭圆的左、右焦点,为顶点的三角形的周长为,一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为、和、.
(1)求椭圆和双曲线的标准方程;
(2)设直线、的斜率分别为、,证明为定值;
(3)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】右图是一个几何体的平面展开图,其中ABCD为
正方形, E、F分别为PA、PD的中点,在此几何体中,
给出下面四个结论:
①直线BE与直线CF异面;②直线BE与直线AF异面;
③直线EF//平面PBC; ④平面BCE⊥平面PAD.
其中正确结论的个数是
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com