精英家教网 > 高中数学 > 题目详情
在△ABC中,acosA=bcosB,则三角形的形状为(  )
A.直角三角形
B.等腰三角形或直角三角形
C.等边三角形
D.等腰三角形
∵acosA=bcosB,
∴根据正弦定理,得sinAcosA=sinBcosB,即sin2A=sin2B.
∵A∈(0,π),
∴2A=2B或2A+2B=π,得A=B或A+B=
π
2

因此△ABC是等腰三角形或直角三角形.
故选:B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知是三角形的一内角,且等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知tan2α=
3
4
,α∈(0,
π
4
),则
sinα+cosα
sinα-cosα
=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,已知
sin2A+sin2B-sin2C
sin2A-sin2B+sin2C
=
1+cos2C
1+cos2B
,求△ABC的形状.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

△ABC中,若sinA=2sinBcosC,sin2A=sin2B+sin2C,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=sinx+
3
cosx(x∈R).求:
(1)若x∈R,求f(x)的值域,并写出f(x)的单调递增区间;
(2)若x∈(-
π
2
π
3
)
,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=
3
2
sin2x-cos2x-
1
2
,(x∈R)
(1)求函数f(x)的对称轴;
(2)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=
3
,f(C)=0,sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在△ABC中,若acosA+bcosB=ccosC,则△ABC的形状是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2012•广东)已知函数(其中ω>0,x∈R)的最小正周期为10π.
(1)求ω的值;
(2)设,求cos(α+β)的值.

查看答案和解析>>

同步练习册答案