分析 由${S}_{n}^{2}$=an(Sn-$\frac{1}{2}$)(n≥2),可得 ${S}_{n}^{2}$=(Sn-Sn-1)(Sn-$\frac{1}{2}$)(n≥2),变形为:$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}$=-2,再利用等差数列的通项公式即可得出.
解答 解:∵${S}_{n}^{2}$=an(Sn-$\frac{1}{2}$)(n≥2),
∴${S}_{n}^{2}$=(Sn-Sn-1)(Sn-$\frac{1}{2}$)(n≥2),
化为:2SnSn-1-Sn+Sn-1=0,
∴$\frac{1}{{S}_{n}}-\frac{1}{{S}_{n-1}}$=-2,
∴数列$\{\frac{1}{{S}_{n}}\}$是等差数列,首项为1,公差为-2.
∴$\frac{1}{{S}_{n}}$=1-2(n-1)=3-2n.
∴Sn=$\frac{1}{3-2n}$.
故答案为:$\frac{1}{3-2n}$.
点评 本题考查了等差数列的通项公式、递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{1}{2e},\frac{1}{2})$ | B. | $(0,\frac{1}{2})$ | C. | $(\frac{1}{2e},+∞)$ | D. | $(\frac{1}{e},\frac{1}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com