精英家教网 > 高中数学 > 题目详情
已知平面内向量
a
b
c
两两所成的角相等且两两夹角不为0,且|
a
|=1,|
b
|=2,|
c
|=3

(1)求向量
a
+
b
+
c
的长度;
(2)求向量
a
+
b
+
c
a
的夹角.
分析:(1)平面内向量
a
b
c
两两所成的角相等,得到三个向量所成的角都是120°,根据模长公式表示出要求的向量的模长,根据所给的条件得到模长的值.
(2)把所给的向量代入求模长的公式,根据已知向量的模长和向量之间的夹角求出向量的夹角的余弦值,得到两个向量的夹角.
解答:解:(1)∵平面内向量
a
b
c
两两所成的角相等,
∴三个向量所成的角都是120°,
∴|
a
+
b
+
c
|2=
a
2
+
b
2
+
c
2
+2
a
b
+2•
b
c
+2
a
c

=1+4+9-2-6-3=3
∴|
a
+
b
+
c
|=
3

(2)设两个向量的夹角为θ,
∴cosθ=
a
•(
a
+
b
+
c
|
a
||
a
+
b
+
c
|
=
1-1-
3
2
3
=-
3
2

∴两个向量的夹角是
5
6
π,
即两个向量之间的夹角是
5
6
π.
点评:本题考查利用向量的数量积表示向量的夹角和向量的模长公式的应用,本题解题的关键是正确利用向量的模长公式和求夹角的公式.本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•安徽模拟)给出下列命题,其中正确的命题是
①③④
①③④
(写出所有正确命题的编号).
①非零向量
a
b
满足|
a
|=|
b
|=|
a
-
b
|
,则
a
a
+
b
的夹角为30°;
②已知非零向量
a
b
,则“
a
b
>0
”是“
a
b
的夹角为锐角”的充要条件;
③命题“在三棱锥O-ABC中,已知
OP
=x
OA
+y
OB
-2
OC
,若点P在△ABC所在的平面内,则x+y=3”的否命题为真命题;
④若(
AB
+
AC
)•(
AB
-
AC
)=0
,则△ABC为等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知对任意平面向量
AB
=(x,y),把
AB
绕其起点沿逆时针方向旋转θ角得到向量
AP
=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把点B绕点A逆时针方向旋转θ角得到点P.已知平面内点A(1,2),B(1+
2
,2-2
2
);把点B绕A点沿顺时针方向旋转
π
4
后得到点P,则P点坐标是
(0,-1)
(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知对任意平面向量
AB
=(x,y)
,将
AB
绕其起点沿顺时针方向旋转θ角得到向量
AP
=(xcosθ+ysinθ,-xsinθ+ycosθ)
,叫做将点B绕点A沿顺时针方向旋转θ角得到点P.
(1)已知平面内点A(1,2),点B(1+
2
,2-2
2
)
,将点B绕点A沿顺时针方向旋转
π
4
得到点P,求点P的坐标;
(2)设平面内曲线3x2+3y2+2xy=4上的每一点绕坐标原点O沿顺时针方向旋转
π
4
得到的点的轨迹是曲线C,求曲线C的方程;
(3)过(2)中曲线C的焦点的直线l与曲线C交于不同的两点A、B,当
OA
OB
=0
时,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面内向量
a
b
c
两两所成的角相等且两两夹角不为0,且|
a
|=1,|
b
|=2,|
c
|=3

(1)求向量
a
+
b
+
c
的长度;
(2)求向量
a
+
b
+
c
a
的夹角.

查看答案和解析>>

同步练习册答案