精英家教网 > 高中数学 > 题目详情
已知动圆过定点A(4,0),且在y轴上截得的弦MN的长为8.求动圆圆心的轨迹C的方程.
考点:轨迹方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:设圆心C(x,y),过点C作CE⊥y 轴,垂足为E,利用垂径定理可得|ME|=4,又|CA|2=|CM|2=|ME|2+|EC|2,利用两点间的距离公式即可得出.,
解答: 解:设圆心C(x,y),过点C作CE⊥y 轴,垂足为E,则|ME|=4,
∴|CA|2=|CM|2=|ME|2+|EC|2
∴(x-4)2+y2=42+x2,化为y2=8x.
点评:本题综合考查了抛物线的标准方程及其性质、垂径定理、两点间的距离公式,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

2014年春节期间,高速公路车辆剧增,高速公路管理测控中心在一特定位置从七座以下小型汽车中按先后顺序,每间隔50辆就抽取一辆的抽样方法抽取40辆进行电子测速调查,将它们的车速(km/h)分成六段[80,85),[85,90),[90,95),[95,100),[100,105),[105,110)后得到如图的频率分布直图.
(1)测控中心在采样中,用到的是什么抽样方法?并估计这40辆车车速的平均数;
(2)从车速在[80,90)的车辆中任抽取2辆,求抽出的2辆车中车速在[85,90)的车辆数的概率.参考数据:82.5×0.01+87.5×0.02+92.5×0.04+97.5×0.06+102.5×0.05+107.5×0.02=19.4.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在边长为4的菱形ABCD中,∠DAB=60°.点E、F分别在边CD、CB上,点E与点C、D不重合,EF⊥AC,EF∩AC=O,AC∩BD=H.沿EF将△CEF折起到△PEF的位置,使得平面PEF⊥平面ABFED.

(Ⅰ)求证:BD⊥平面POA;
(Ⅱ)当PB取得最小值时,请解答以下问题:(提示:设OH=x)
(ⅰ)求四棱锥P-BDEF的体积;
(ⅱ)若点Q在线段AP上,试探究:直线OQ与平面E所成角是否一定大于或等于45°?并说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+y2=16内有一点P(2,2),过点P作直线l交圆C于A,B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB被点P平分时,写出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx2+cx的导函数为h(x),f(x)的图象在点(-2,f(-2))处的切线方程为3x-y+4=0,且h′(-
2
3
)=0,直线y=x是函数g(x)=kxex的图象的一条切线.
(Ⅰ)求函数f(x)的解析式及k的值;
(Ⅱ)若2f(x)≤g(x)-m+4x+1对于任意x∈[0,+∞)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AO是四面体ABCD的高,M是AO的中点,连接BM、CM、DM.求证:BM、CM、DM两两垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

正三角形ABC的三个顶点都在半径为2的球面上,球心O到平面的ABC距离为1,点D是选段BC的中点,过D作球O的截面,则截面面积的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正方体ABCD-A1B1C1D1的棱长为2,线段EF,GH分别在AB,CC1上移动,且EF+GH=
1
2
,则三棱锥EFGH的体积最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系下,点P(x,y,z)满足x2+y2+z2=1,则动点P表示的空间几何体的表面积是
 

查看答案和解析>>

同步练习册答案