| A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{3}+1$ | D. | $\frac{{\sqrt{3}+1}}{2}$ |
分析 由题意可得,三角形F1F2P是有一个内角为60°角的直角三角形,根据此直角三角形,结合双曲线的离心率的定义即可求得双曲线的离心率.
解答 解:由题设知圆C2的直径为F1F2,
则$∠{F_1}M{F_2}=\frac{π}{2}$,
又$∠M{F_1}{F_2}=∠{F_2}NM=\frac{π}{3}$,
所以$∠{F_1}{F_2}M=\frac{π}{6}$,所以|MF1|=c,$|{M{F_2}}|=\sqrt{3}c$,
由双曲线的定义得|MF2|-|MF1|=2a,即$(\sqrt{3}-1)c=2a$,
所以$e=\frac{2}{{\sqrt{3}-1}}=\sqrt{3}+1$,
故选C.
点评 本题考查双曲线的离心率,考查双曲线的定义的运用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{2}{3},2}]$ | B. | $[{1,\frac{8}{3}})$ | C. | $[{2,\frac{8}{3}})$ | D. | $({-∞,\frac{8}{3}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com