分析 (I)当x<0时,-x>0,由已知表达式可求f(-x),根据奇函数性质可求f(x);
(II)①借助二次函数图象的特征及奇函数性质可求a的范围;
②利用奇函数性质及单调递减性质可去掉不等式中的符号“f”,进而可转化为函数最值问题处理.
解答 解:(I)当x<0时,-x>0,又因为f(x)为奇函数,
所以f(x)=-f(-x)=-(-x2-ax)=x2+ax,
所以f(x)=$\left\{\begin{array}{l}{-{x}^{2}+ax,x≥0}\\{{x}^{2}+ax,x<0}\end{array}\right.$.
(II)①当a≤0时,对称轴x=$\frac{a}{2}$≤0,所以f(x)=-x2+ax在[0,+∞)上单调递减,
由于奇函数关于原点对称的区间上单调性相同,所以f(x)在(-∞,0)上单调递减,
所以a≤0时,f(x)在R上为单调递减函数,
当a>0时,f(x)在(0,$\frac{a}{2}$)递增,在($\frac{a}{2}$,+∞)上递减,不合题意,
所以函数f(x)为单调减函数时,a的范围为a≤0.
②f(m-1)+f(m2+t)<0,∴f(m-1)<-f(m2+t),
又f(x)是奇函数,∴f(m-1)<f(-t-m2),
又因为f(x)为R上的单调递减函数,所以m-1>-t-m2恒成立,
所以$t>-{m}^{2}-m+1=-(m+\frac{1}{2})^{2}+\frac{5}{4}$恒成立,所以t>$\frac{5}{4}$,
即实数t的范围为:($\frac{5}{4}$,+∞).
点评 本题考查函数的奇偶性、单调性及其应用,考查不等式恒成立问题,考查学生分析问题解决问题的能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 购买意愿强 | 购买意愿弱 | 合计 | |
| 20-40岁 | |||
| 大于40岁 | |||
| 合计 |
| P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
| k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | 2 | C. | 6 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | 2 | C. | $\sqrt{3}+1$ | D. | $\frac{{\sqrt{3}+1}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{3}$-$\frac{8{y}^{2}}{25}$=1 | B. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1 | C. | $\frac{{x}^{2}}{6}$-$\frac{2{y}^{2}}{25}$=1 | D. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{50}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | 4 | C. | $-\frac{27}{7}$ | D. | $\frac{27}{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com