精英家教网 > 高中数学 > 题目详情
12.已知在平面直角坐标系中,曲线C1的参数方程是$\left\{\begin{array}{l}x=-1+cosθ\\ y=sinθ\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程是ρ=2sinθ.
(Ⅰ) 求曲线C1与C2交点的平面直角坐标;
(Ⅱ) 点A,B分别在曲线C1,C2上,当|AB|最大时,求△OAB的面积(O为坐标原点).

分析 (Ⅰ)由$\left\{\begin{array}{l}x=-1+cosθ\\ y=sinθ\end{array}\right.$消去θ化为普通方程,由ρ=2sinθ,得ρ2=2ρsinθ,得x2+y2=2y,联立求出交点的直角坐标,化为极坐标得答案;
(Ⅱ) 由平面几何知识可知,A,C1,C2,B依次排列且共线时|AB|最大,求出|AB|及O到AB的距离代入三角形的面积公式得答案.

解答 解:(Ⅰ)由$\left\{\begin{array}{l}x=-1+cosθ\\ y=sinθ\end{array}\right.$得$\left\{\begin{array}{l}x+1=cosθ\\ y=sinθ\end{array}\right.$
则曲线C1的普通方程为(x+1)2+y2=1.
又由ρ=2sinθ,得ρ2=2ρsinθ,得x2+y2=2y.
把两式作差得,y=-x,代入x2+y2=2y,
可得交点坐标为为(0,0),(-1,1).(5分)
(Ⅱ) 由平面几何知识可知,
当A,C1,C2,B依次排列且共线时,|AB|最大,此时$|AB|=2+\sqrt{2}$,
直线AB的方程为x-y+1=0,则O到AB的距离为$\frac{{\sqrt{2}}}{2}$,
所以△OAB的面积为$S=\frac{1}{2}(2+\sqrt{2})×\frac{{\sqrt{2}}}{2}=\frac{{\sqrt{2}+1}}{2}$.(10分)

点评 本题考查了参数方程化普通方程,极坐标与直角坐标的互化,考查学生的计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知曲线$f(x)=\frac{a}{x}(x>0,a>0)$上任一点P(x0,f(x0)),在点P处的切线与x,y轴分别交于A,B两点,若△OAB的面积为4,则实数a的值为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.某几何体的三视图如图所示,则其表面积为(  )
A.B.C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点F到E的渐近线的距离为$\sqrt{3}a$,则E的离心率是(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin2$\frac{B-C}{2}+sinBsinC=\frac{1}{4}$.
(Ⅰ) 求角A的大小;
(Ⅱ) 若b+c=2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示,则其表面积为(  )
A.$12+2\sqrt{2}$B.$8+2\sqrt{2}$C.$4+4\sqrt{2}$D.$8+4\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知F1,F2分别是长轴长为$2\sqrt{2}$的椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的左右焦点,A1,A2是椭圆C的左右顶点,P为椭圆上异于A1,A2的一个动点,O为坐标原点,点M为线段PA2的中点,且直线PA2与OM的斜率之积恒为$-\frac{1}{2}$.
(1)求椭圆C的方程;
(2)设过点F1且不与坐标轴垂直的直线l交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点N,点N横坐标的取值范围是$(-\frac{1}{4},0)$,求线段AB长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知等比数列{an}中,a2a4=a5,a4=8,则公比q=2,其前4项和S4=15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=-x2+ax.
(I)求函数f(x)的解析式;
(II)若函数f(x)为R上的单调减函数,
①求a的取值范围;
②若对任意实数m,f(m-1)+f(m2+t)<0恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案